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Abstract

The review presents data on the role of ionizing radiation/hyperthermia as modulating factors in exosome
secretion/composition. Tumor-derived exosomes are important participants in the formation of the tumor
microenvironment. They modulate the inflammatory response in the tumor, influence the capability of fibroblasts
and mesenchymal cells to differentiate into myofibroblasts, trigger the angiogenic process, promote epithelial
to mesenchymal transformation of tumor cells and form the pre-metastatic nisches. The review describes the
mechanisms of behavior of the recipient tumor cells receiving exosomes from irradiated cells, including activation
of Akt signaling, stabilization of MMP9/MMP2, and enhancement of exosome-mediated motility. In vitro models
demonstrate the efficacy of exosomes from mesenchymal stem cells (MSC) to modulate both direct and abscopal
effects of radiation therapy/hyperthermia. Exosomes derived from MSC are the most attractive carriers for the
delivery of proteins, miRNAs, drugs, and metals to the recipient tumor cells. MSC-derived exosomes potentiate
the efficacy of both radiotherapy and hyperthermia in vitro studies. However, some important aspects regarding
a) the most effective options for administering MSC/MSC exosomes to modulate radiotherapy/hyperthermia;
b) radiation dose; c) options of hyperthermia; d) detailed mechanisms of the effect of irradiated MSC-derived
exosomes on the tumor microenvironment and cancer cells, still remain poorly understood.
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AHHOTaUuA

B 0630ope npencrtaBneHbl 0006LLEHHbIE AaHHbIE O PONU MOHWU3MPYIOLLEro U3MyYeHUs/TmnepTepMnmn Kak
MoZynupyloLwmx akTopoB B cekpeumm/coctaBe 3k30coMm. OnyxoneBble 3K30COMbI ABNATCA BaXKHbIMU
yyacTHMKaMu OOPMUPOBaHNSA MUKPOOKPYXKEHWUSI OMyXOnu NMyTeM MOAYMAUMM BOCMANUTENbHOrO OTBETa B
onyxonu, BNUsSHUSA Ha anddepeHumnpoBky rnbpobrnacTtoB U ME3EHXMMHbIX KNEeToK B MuogmbpobnacThbl,
3anycka aHrMoreHHoro npotwecca, CTUMYNMPOBaHWS anuTenanbHO-Me3eHXMarnbHON TpaHcdopmaummn un
hopmupoBaHust onyxonesbix NpeHnu. OnucaHbl HEKOTOpbIE MeXaHWU3Mbl MOBEAEHNST OMyXONeBbIX KIETOK-
PEeLMNMEHTOB, NOMyYalLLUX 3K30COMbl OT OOMNyYEHHbIX KIETOK, BKIOYAa akTMBaLMi0 nepeaady curHanoB
Akt, ctabunusaumto MMPO/MMP2, ycuneHne onocpedoBaHHON 3K30COoMaMu NOABMXKHOCTU. Mogenu in
vitro npogemMoHcTprpoBany apdheKTUBHOCTb 3K30COM U3 Me3eHXMMarbHbIX CTBONoBbIX knetok (MCK) ans
MOZYMALMM Kak MPAMOro BO3AENCTBUSA paguaunn/rmneptTepMun, Tak U ycuneHns abckonansHoro adpdekTa.
Ok3o0combl, nony4veHHble 3 MSC, aBnstoTca Hambonee NpuBnekaTenbHbIM HOCUTENEM ANa AOCTaBku 6en-
koB, MMKpPOPHK, nekapcTts, MeTannoB K OnyxoneBbiM KneTkam peuunueHta. Jk3ocombl MSC ycunumsatoT
apdeKThbI Kak y4eBor Tepanum, Tak U rMnepTeEPMUN B 3KCMEPUMEHTanNbHbIX MCCNeaoBaHUsAX. TeM He meHee
OCTaeTcst paf BaXkHbIX BONPOCOB, KacarLwmxcs: a) Hanbornee adeKTUBHbIX BapnaHTOB BBEAEHNS 9K30COM
MSC ans mogynauum ny4eBon Tepanun/runeptepMun; 6) 403bl MOHWM3MPYHOLLETO N3ITYyYEHNS]; B) BapUaHTOB
rMnepTepmum; r) AeTarnbHbIX MEXaHU3MOB BO34ENCTBUSI 9k30COM U3 06ryyeHHbIX MCK Ha onyxoneBble KneTku
N MUKPOOKPY>KEHME OMyXOnMu.

KnioueBble croBa: paguoTepanus, runeprepmMusi, abckonanbHbIn 3peKT, 3rI0Ka4YeCTBEHHbIE ONMYXOIu,

BHEKIETOYHbIE BE3UKYJIbl, 3K30COMBbI.

The abscopal effect of radiation therapy (radiation
therapy in combination with modifiers, in particular,
with hyperthermia) is the non-targeted effect of radiation
suggesting the transmission of radiation signals from
irradiated to non-irradiated cells. A somewhat different
interpretation of this term suggests regression of
distant tumor sites after localized irradiation [1, 2].
The abscopal effect is also described for other local
physical effects, for example, hyperthermia treatment
[3]. It is believed that the mechanisms underlie the
abscopal effect are as follows (Fig. 1):

1. Intercellular interaction («gap junctiony),
including a p53-mediated path of the damage signal.

2. Another mechanisms associated with the
secretion of mediators into the culture medium
(reactive oxygen species, cytokines, hormones, growth
factors, DNA fragments, extracellular vesicles (EVs),
including exosomes).
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The origin, structure and

composition of exosomes

Most researchers distinguish 2 different subtypes
of extracellular vesicles (EVs): microvesicles and
exosomes. They differ significantly in morphology,
biophysical characteristics (shape, size, optical density),
biogenesis and functions. Exosomes are homogeneous
group of membrane vesicles ranging in size from 30
to 100 nm with a cup-like morphology of endosomal
origin secreted by all types of cells. Microvesicles, also
called microparticles, are much larger extracellular
particles with diameters from 100 to 1000 nm in
various shapes. The composition of microvesicles is
more complex and heterogeneous. Since exosomes are
most reported in the context “abscopal effect”, in our
review we will discuss this type of EVs. The protein
ensemble of exosomes secreted by various types of
cells is systematized in the ExoCarta database. Various
classes of exosomal proteins have been identified:
adhesion molecules (integrins), membrane transport/
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transfer proteins (annexins, proteins of the Rab family),
cytoskeleton proteins, tetraspanin (CD63, CD9, CDS]1,
etc.), antigen-presenting molecules (proteins I and
II histocompatibility class), enzymes (proteases,
pyruvate kinase), death receptors (TNFalpha, TRAIL),
cytokines, heat shock proteins and tumor antigens
(CEA, HER2). The lipid composition of exosomes
has been much less studied, but lipids are believed to
be important for maintaining their shape, plasticity,
stability and functional activity. The main lipids
of EVs are sphingomyelin, phosphatidylcholine,
phosphatidylethanolamine, gangliosides and
phosphatidylinositol, as well as lysobiphosphatidic
acid, which determine the high stability of exosomes
in the blood and other biological fluids, and also
protect the contents of exosomes (functionally active
miRNAs and other non-coding RNAs, proteins) from
destruction [4]. The main recipients of exosomes are
cells of hematopoietic origin, fibroblasts, endothelial
and tumor cells [5].

The effect of ionizing radiation

on the secretion of exosomes

lonizing radiation is one of the main environmental
factors that induce cellular stress. An accumulation of
reactive oxygen species, nitric oxide and cytokines
can be observed as an additional mechanisms of the
adverse effect of radiation. Moreover, it was shown
that X-ray irradiation itself induces exosome secre-
tion by various types of tumor cells (MCF-7, FaDu,
BHY) [6, 7]. The expression level of genes including
Alix, Rab27a, Rab27b, TSPAS, and CD63 as well as
the protein level of CD63 in X-ray-treated MCF-7
cells increased with increasing X-ray dose (p<0.05).
In comparison with untreated cells, the total exosomal
protein level, acetylcholinesterase activity, size and
zeta-potential values of exosomes from irradiated cells
increased (p<0.05). Data suggest X-ray could activate
exosome biogenesis and secretion in MCF-7 cells in
a dose-dependent way [6].

The effect of ionizing radiation

on the exosome composition

Exosomes from non-irradiated tumor and non-
tumor cells contain both radiosensitizing and radiore-
sistance factors (miRNAs, proteins) [8—10]. The most
complete picture of changes in the protein composition
of tumor cell exosomes after exposure to ionizing
radiation is provided by proteomics. The most over-
expressed exosomal proteins from irradiated cells (cell
cultures of HPV-negative squamous cell carcinoma of
the head and neck (HNSCC) — FaDu) involved in the
transcription, translation, cell division, protein folding
(chaperones) and proteasome complex proteins were
detected. The authors suggest that cell cycle arrest
and blockade of transcription/translation are the main
responses of cells to ionizing radiation. Therefore, the
presence of transcription/translation/protein folding
factors and proteins of ubiquitin-dependent protein
degradation system in the exosome cargo secreted
from irradiated cells may reflect the dynamic adapta-
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tion of cells to stress. Perhaps through secretion of
exosomes, cells try to remove excess/unnecessary
components. Also, the presence of signaling factors
(RABs and RASs proteins) related with GTPases in
exosomes may reflect the stress-induced response
triggered in cells exposed to radiation [11].

Data obtained by L. Mutschelknaus et al. (2017) on
HNSCC cell cultures showed that exosomes derived
from cancer cells modify the motility of tumor cells
and metastasis. The authors demonstrated the asso-
ciation of radiation changes in exosomes with their
ability to stimulate the migration of recipient HNSCC
cells. Exosomes isolated from irradiated donor cells
increase HNSCC BHY and FaDu cell motility. The
studies revealed activation of Akt signaling in recipient
cells, which manifested through increased activity of
phospho-mTOR, phospho-rpS6 proteases and stability
of matrix metalloproteinases (MMP2/9). The inhibi-
tion of Akt signaling at the level of internalization
of exosomes by tumor recipient cells (by dynamin)
blocked this effect. Thus, it can be assumed that Akt
signaling is a key point in exosome-mediated migra-
tion. Proteomic analysis of exosomes isolated from
irradiated and non-irradiated BHY donor cells revealed
39 elevated and 36 decreased proteins. Fibroblast
growth factor receptor 1 (FGFR1), heat shock proteins
(HSP90AAT1, HSP9OAB1, HSP90B1) are candidate
proteins, which are upregulated in exosomes after
irradiation and activate Akt signaling way, stabilize
MMP2/MMP9, enhance exosome-mediated motility
as well as metastasis. [11]. FGFR1 is overexpressed
in 75 % of HPV-negative patients with HNSCC, cor-
relates with poor overall, disease-free survival, and
induces radiation resistance in glioblastoma cells
[12, 13].

Numerous miRNAs detected in circulating exo-
somes before radiation therapy (miRNA-493, miR-
NA-323a, miRNA-411, miRNA-494, miRNA-379,
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miRNA-654, miRNA-409) are associated with the
effectiveness of prostate cancer radiotherapy (carbon
ion radiotherapy). Repeated measurements of miRNA-
654 and miRNA-379 can be used to conveniently
monitor the effectiveness of radiation therapy in these
patients [2, 14]. Radiation-induced miRNA-208a, a
marker of the radioresistance of lung cancer and a
promising therapeutic target, was detected in circulat-
ing exosomes [2].

The abscopal effect of hyperthermia: the role

of extracellular vesicles/exosomes [15—18]

Many recent studies have demonstrated that combi-
nation of hyperthermia and chemotherapy enhances the
anti-tumor effect of tumor-cell- and non-tumor-cell-
derived exosomes [15—18]. To heat biological objects,
various sources of energy, such as microwave ablation,
radiofrequency ablation, laser thermal ablation, and
ultrasonic ablation can be used. Microwave ablation
(MVA) and radiofrequency ablation (RFA) are widely
used both in vivo and in vitro studies. However, these
are mainly experimental studies [19].

The mechanisms of anti-tumor activity of exo-
somes derived from cells undergoing hyperthermia
have been poorly studied, but there is evidence that
under such conditions exosomes can accumulate and
transport drugs, a complex of chemokines, heat shock
proteins, microRNAs that promote apoptosis, induce
redistribution of lymphocyte fractions, etc. [16—18].
In addition, active endocytosis of magnetic particles
packed in exosomes by a tumor cells was detected in
vitro. This process accelerated tumor ablation through
hyperthermia induced by an external magnetic field

[19]. There are sufficient data indicating the feasi-
bility of using thermal ablation in the treatment of
osteosarcomas. The abscopal antitumor effect of
hyperthermia on the Walker-256 carcinosarcoma was
found [3, 20].

Besides tetraspanins and integrins, the exosome
membrane contains a complex of proteases. Tetras-
panin-associated proteases, which mainly include
ADAMI10, ADAMI17 and matrix metalloproteinases
(MMPs), are important for tumor invasion, metasta-
sis, and chemoresistance [21-25]. Overexpression of
MMP2/MMP9 gelatinases after incubation of tumor
recipient cells with exosomes from irradiated donor
cells is considered to be one of the main mecha-
nisms of the non-target effect of radiotherapy [11].
Secreted MMPs (MMP1, MMP13, MMP2, MMP9,
MMP3, MMP10, MMP7) and membrane-bound
MMPs (MMP14, MMP24, MMP25) were detected
in exosomes. MMP2 and MMP9 gelatinases are the
most studied enzymes. Also, EVs contain an inducer
of MMPs — EMMPRIN (CD147), as well as MMPs
inhibitors TIMP1, TIMP2 and TIMP3 [22-24, 26].
Both immature and mature forms of MMP2, MMP9,
MMP 14 with proteolytic activity were detected in EVs,
including exosomes derived from from tumor-and non-
tumor-derived cell lines [27]. Substrates for MMPs
are type IV collagen, elastin, fibronectin and laminin,
as well as cell surface proteins E-cadherin, fibrin and
interleukin-1. Thus, they modulate the interaction
of cells and extracellular matrix. It is believed that
exosomes transfer MMP2, MMP3, and MMP9 from
primary tumors to the lymph nodes and lung tissue [21,
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25]; however, the role of vesicular metalloproteinases
and their inhibitors in the formation and progression of
malignant tumors has been poorly studied. The effects
of ionizing radiation and hyperthermia are practically
unexplored.

Exosomes from multipotent mesenchymal

stem cells potentiate the effect of both

radiotherapy and hyperthermia

Exosomes derived from multipotent mesenchymal
stromal cells (MSCs) are the most attractive carriers
for delivery of proteins, miRNAs, drugs, metals to
recipient tumor cells due to effective biocompatibility,
reduced immunogenicity (reduced expression of MHI
I'and II), small size and ability to cross the blood-brain
barrier. In addition, methods for culturing human
MSCs from various sources (bone marrow, adipose
tissue) and isolating exosomes from cell cultures are
well established. It has long been shown that MSCs
from various sources stimulate tissue regeneration,
including bone, skeletal muscle, myocardium, liver,
and nervous tissue. The mechanisms of this effect are
presented in Fig. 2. They include:

1. Integration of transplanted MSCs into recipient
tissues with the formation of progenitor tissue-specific
stem cells.

2. Secretory activity of MSCs, including the secre-
tion of both soluble factors and factors in the composi-
tion of EVs/exosomes.

Among the growth factors mediated by MSCs,
vascular endothelial growth factor (VEGF), basic
fibroblast growth factor (bFGF), nerve growth factor
(NGF), glial cell neurotrophic factor (GCNF), platelet
growth factor (PDGF-BB), TGFbeta and others factors
were identified [28]. Exosomes derived from MSCs
will have a trophic effect and stimulate proliferation
and angiogenesis [29]. Thus, exosomes obtained by
culturing MSCs from bone marrow attenuated radia-
tion-induced bone loss in a rat model that was similar
to transplantation of MSCs. Among the mechanisms
that explain this phenomenon, the contribution of
exosomes to the antioxidant status, restoration of DNA
damage, proliferation and aging of recipient cells, as
well as induction of angiogenesis was described. The
positive effect of exosomes on the differentiation po-
tential of irradiated MSCs with the predominance of
their osteogenic differentiation in experiments both in
vitro and in rat models was also revealed [30].

Both MSCs and cancer cells, including cancer
stem cells, can secrete EVs with a mutual metabolic
effect on oncogenesis, as a result of which exosomes
from heterogeneous MSCs of various origins contain
various unique factors with different effects on tumor
cells [28]. A number of studies indicate the tumor-
stimulating effect of exosomes from MSCs. On the other
hand, human umbilical cord MSC-derived exosomes
protected against cisplatin-induced nephrotoxicity and
stimulated cell proliferation [31]. A good antitumor
effect of MSC exosomes after incubation with taxol
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was shown. Taxol-loaded exosomes were isolated and
incubated with various highly metastatic human cell
lines. Although the control MSC exosomes almost did
not inhibit tumor growth, exposure to taxol-loaded
exosomes was associated with cytotoxicity reaching
80-90 %, indicating a specific and more effective
targeting of the tumor. Systemic intravenous use of
MSC-derived exosomes loaded with taxol revealed
a decrease in subcutaneous primary tumors of more
than 60 %, as well as a significant reduction in
metastases of MDA-hybl in the lungs, liver, spleen
and kidneys. The effect of MSC exosomes was similar
to that observed for taxol, although the concentration
of taxol in exosomes was approximately 1000 times
lower [28]. V.A. Farias et al. (2018) revealed a
significant reduction in both the primary tumor and
metastatic foci of subcutaneous xenografts of A375
human melanoma (NOD/SCID-gamma mice) treated
with combination of MSC and radiation therapy. The
most significant antitumor/antimetastatic effect was
observed when MSC was used before radiation therapy
or simultaneously with radiation therapy. The authors
suggested that this effect might be due to exosomes
secreted by MSC. To simulate this effect in vitro, a
comparative proteomic analysis of exosomes from
unirradiated and irradiated at a dose of 2 Gy MSC was
performed. Among the most representative clusters of
exosomes originating from irradiated MSC, clusters of
cell adhesion of leukocytes and cell localization were
identified. Proteins typical for these clusters included
annexins and integrins such as ANXA1, ANAX?2,
ITGBI1, ITGA3, FN1, CTNNBI1, APOH, which can
activate the adhesion of exosomes and leukocytes to
tumor cells, thus leading to inhibition of tumor growth
and metastasis [32]. The use of iron oxide-associated
exosomes from MSCs of various origins (adipose
tissue, bone marrow, dental pulp, human umbilical
cord cells) is promising for ablation of tumor cells
using magnetic hyperthermia [18].

Options for the internalization of exosomes:

as one of the reasons for the presence/absence

of an abscopal effect in vitro and in vivo

Currently, several variants of the interaction of
exosomes with recipient cells have been described.
Exosome uptake mechanisms may include:

- ligand-receptor interactions without membrane
fusion (antigen presentation);

- fusion of exosome membranes and target cells,
leading to the transfer of proteins anchored in the
vesicular membrane to the plasma membrane of the
recipient cell;

- internalization of exosomes by endocytosis
(all fragments of exosomes are translocated into the
cell);

- impact of the components of exosomes on the cell
after their lysis in the extracellular environment (at
low pH, for example, in the tumor microenvironment)

[4].

SIBERIAN JOURNAL OF ONCOLOGY. 2020; 19(2): 108-115
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Thus, it can be assumed that the effect of exosomes
at the cellular and whole body levels significantly
depends on the option of internalization of exosomes.
Visualization of exosome uptake by endotheliocytes,
macrophages, hepatocytes, tumor and other types of
cells using confocal laser microscopy is quite common.
Exosomes isolated by various methods are suitable for
this study. 3Ddata reconstruction allowed researchers
to demonstrate EVs internalization and cellular
localization. EVs internalization has been observed
by means of confocal microscopy after staining with
different fluorescent lipid membrane dyes including
rhodamine, DiD, Dil, PKH26, PKH67. Membrane-
permeable compounds are also used for EVs staining
[33]. Several sub-populations of exosomes (external
adherent exosomes, internalized exosomes, co-
localized exosomes) can be detected using Amnis
ImageStream® X Mk II, which combines the speed,
sensitivity and phenotyping of flow cytometry with
detailed images and the functionality of microscopy
[34-36].

Conclusion

Exosomes are nanosized vesicles that can deliver
bioactive cargo, including lipids, growth factors and
their receptors, proteases, signaling molecules, mnRNAs
and miRNAs released from donor cells to recipient
cells. Tumor exosomes are important participants in
the formation of the tumor microenvironment by (a)
modulating the inflammatory response in the tumor
(b) influencing the differentiation of fibroblasts
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