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Abstract

The purpose of the study was to analyze the ability of five antitumor drugs from the pharmaceutical group of
protein kinase inhibitors (gefitinib, imatinib, pazopanib, ponatinib and enzastaurin) to reactivate the expression
of the epigenetically silenced GFP in HeLa Tl cells, and to estimate the effect of epigenetically active drugs
on: 1) acetylation and methylation of histones H3 and H4; 2) integral DNA methylation; 3) activity of HAT
and HDAC1 enzymes; 4) expression levels of the genes encoding epigenetic regulation enzymes (DNMTT,
DNMT3A, DNMT3B; SIRT1, HDAC1; SETD1A, SETD1B, SUV420H1, SUV420H2, SUV39H1, SUV39H2).
Material and Methods. The epigenetic activity of antitumor drugs was determined using the HelLa TI test
system, a population of HelLa cells with the retroviral vector containing the epigenetically silenced GFP. The
level of integral DNA methylation was analyzed using Mspl/Hpall methyl-sensitive restriction analysis. Histone
modifications were analyzed by Western blotting with antibodies to acetylated and methylated histones H3
and H4. The total activity of HAT enzymes was analyzed using Histone Acetyltransferase Activity Assay Kit.
Expression of the epigenetic enzyme genes was analyzed using real-time quantitative RT-PCR. Results.
It was shown that only the enzyme inhibitor CB protein kinase enzastaurin had the ability to reactivate the
expression of epigenetically silenced GFP in the HeLa Tl cells. We showed that under the action of enzastau-
rin, the level of integral DNA methylation and expression of DNMT3A and DNMT3B DNA methyltransferase
genes decreased. It was also found that enzastaurin reduced the expression levels of histone deacetylases
HDACT and SIRT1, but did not affect the activity and expression levels of histone acetylases, the level of
histone methylation (H3K4me3, H3K9me3, H3K27me3, H4K20me3), and the level of expression of the histone
methyltransferases (SUV39H1, SUV39H2, SUV420H1, SUV420H2, SETD1A u SETD1B). Conclusion. The
data obtained are important for clarifying the mechanisms of action of 5 protein kinase inhibitors, in particular
with respect to enzastaurin, the protein kinase Cf inhibitor, for which the ability to reactivate epigenetically
silent genes due to the effect on DNA methylation and histone acetylation was demonstrated.

Key words: protein kinase inhibitors, enzastaurin, epigenetic activity, HeLa TI, histone modifications, DNA
methylation, HAT, HDAC.
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AHHOTaUuA

Lilenb nccnepoBaHus — NPOBECTY aHanM3 CrnocobHOCTH 5 NPOTMBOOMYXONEBbLIX NpenapaTtoB U3 dhapMakoso-
rMYECKON rpynnbl UHTMBUTOPOB NPOTENHKMHA3 (reUTUHMG, MaTHNG, Na3onaHns, MOHATUHWG 1 3H3acTaypyH)
peakTUBMPOBATb SKCMPECCUIO SMUIrEeHETUYECKM penpeccupoBaHHoro reHa GFP B knetkax Hela TI, a Takke
U3yYnTb BrMsSiHWE NpenapaToB, 0bnaganLwmx peakTMBmpyowmnm apdekTom, Ha: 1) aueTunmpoBaHue u me-
TunupoBaHue rmctoHoB H3 n H4; 2) nnterpansHoe metunupoBanue [HK; 3) aktuBHoCTb chepmeHTOoB HAT
n HDAC1; 4) ypoBeHb 3KCMPECCUN reHOB, KOOAMPYHLLMX hepMEHTbI anureHeTnyeckon perynauun (DNMTT,
DNMT3A, DNMT3B; SIRT1, HDAC1; SETD1A, SETD1B, SUV420H1, SUV420H2, SUV39H1, SUV39H2).
MaTepuan un metoabl. CKPUHWHT 3NMreHETUYECKON akTUBHOCTU MPOTUBOOMYXOMEBbIX NPenapaToB OCYyLLECT-
BNSANN € NOMOLLbIO TecT-cuctembl Hela Tl — nonynauuun knetok Hela ¢ MHTErpupoBaHHbIM PETPOBUPYCHBLIM
BEKTOPOM, CoAepKaLLM NUreHEeTUHECKN penpeccupoBaHHbIvi reH GFP. VI3aMeHeHne ypoBHSA MHTErpanbHOro
meTunmpoBaHusa OHK aHanuanpoBany ¢ NOMOLLbI METUI-HYBCTBUTENBHOIO PECTPUKLIMOHHOMO aHanmaa Mspl/
Hpall. N3ameHeHne ypoBHS TMCTOHOBbLIX MoAUMKaLuii aHanmsnmpoBann MeTogomM BectepH-6noTTuHr ¢ aHTu-
Tenamu K aLeTurMpoBaHHbIM U METUIMPOBAHHBLIM canTam rmctoHoB H3 n H4. AHanua ToTanbHON akTUBHOCTU
depmeHTOB cemerictBa HAT npoBoaunv npu ncnonb3oBaHuy Habopa peakTVBOB Ansi ONpeaeneHnst akTuB-
HOCTU TMCTOHOBBIX aueTunTpaHcdepas. AHanm3 aKCNPECCUN reHOB ANUTEHETUYECKUX PETYNATOPHbIX dep-
MEHTOB OCYLLECTBIIANN C NOMOLLbI0 MeToaa konmyecTtBeHHon OT-TLIP B peanbHoM BpemeHu. Pe3ynbTarhl.
MokasaHo, 4To cpeam uccnegyembix NpenaparoB COCOGHOCTLI0 PeaKTUBMPOBATh IKCMPECCUIO ANUreHeTuYe-
CKWN penpeccupoBaHHoro reHa GFP B nonynsuun Hela Tl o6nagaeT Tonbko MHIMbUTOp npoTenHkmnHasbl CR
3H3acTaypvH. Mbl MpoAeMOHCTPUPOBanu, YTo Npu AEVCTBUM SH3acTaypuHa NPOUCXOAUT CHIDKEHME YPOBHS
nHTerpansHoro metunuposaHus JHK n akcnpeccun reHos OHK-meTuntpaHcthepas DNMT3A n DNMT3B. Tak-
)K€ YCTaHOBIEHO, YTO 3H3aCTaypuH CHIKAET YPOBEHb IKCMPECCUM TMCTOHOBLIX Aeauetuna3 HDAC1n SIRTT,
HO He BINUSIET Ha aKTUBHOCTb U YPOBHW 3KCNPECCUM MTMCTOHOBBIX aLeTunas, ypoBeHb METUMMPOBAHUS TMCTO-
HoB (H3K4me3, H3K9me3, H3K27me3, H4K20me3) n ypoBeHb 3KCNpeccHmn rmcToHOBbIX METUNTPaHcdepas
(SUV39H1, SUV39H2, SUV420H1, SUV420H2, SETD1A u SETD1B). 3aknto4eHue. [ony4yeHHble faHHbIe
Ba>kHbl B MIlaHe YTOYHEHWS MEXaHN3MOB AeNCTBUS 5 NPOTMBOOMNYXONEBbLIX MPenapaToB rpynmbl UHIMOUTOPOB
NPOTEUHKNHA3, B 0COBEHHOCTUN B OTHOLLEHUW MHIMBUTOpa NpoTenHkMHasbl CR aH3acTaypuHa, AN KOTOporo
Oblna NpoAeMOHCTPUPOBaHa CNOCOBHOCTb PEAKTMBMPOBATbL SKCMPECCUI0 SMUIeHETUYECKN MONYaLLUX reHoB
3a CYET BMUSAHUS Ha MexaHu3Mbl meTunmpoBaHnsa JHK 1 aueTmnmpoBaHnsi TMCTOHOB.

KnioyeBble crnoBa: MHTIMOMTOPbLI MPOTEMHKUHA3, 3H3acTaypUH, ANUreHeTUYecKasa akTuBHocTb, Hela Ti,
rMcToHoBble Mogudukauum, metunupoBanue OHK, HAT, HDAC.
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Introduction

Disruption of epigenetic regulation, along with
genetic aberrations, plays a significant role in ini-
tiation, promotion, and progression of tumor growth.
Activation of proliferation, inhibition of apoptosis,
intercellular interactions, and cell aging can occur
during carcinogenesis as a result of changes in the
profile of epigenetic modifications due to impaired
histone acetylation and methylation, as well as DNA
methylation [1]. These changes can be due to a mu-
tation or dysregulation of the expression of histone-
and DNA-modifying enzymes or direct inhibition of
the activity of these enzymes and activation of their
degradation. Epigenetic regulatory enzymes include
histone acetyltransferases (HATs) and deacetylases
(HDAC:S), histone methyltransferases (HMTs) and
demethylases (HDMs), as well as DNA methyltrans-
ferases (DNMTs). Epigenetic changes are usually
reversible: restoration of the activity of enzymes re-
sponsible for epigenetic regulation of transcription
leads to normalization of the epigenetic profile [2, 3].
Thus, enzymes responsible for epigenetic regulation of
transcription represent targets for anticancer therapy.
Low-molecular-weight compounds selectively inhibit-
ing the enzymes of epigenetic regulation are already
used for the treatment of certain types of cancer.

Currently, the use of azacitidine and decitabine,
inhibitors of DNA methyltransferase (DNMT), is one
of the most successful epigenetic anticancer strategies.
However, these drugs have a number of limitations.
Firstly, since these molecules are modified by cytosine
analogues, they can be mistakenly incorporated into
nascent DNA and RNA, which increases the probabil-
ity of mutations. Secondly, azacitidine and decitabine
are highly toxic and of low chemical stability [4].
Nowadays, the properties of non-nucleoside inhibitors
of DNMTs selectively interacting with the catalytic
sites of enzymes are actively studied; these inhibitors
include RG108, Psammaplin, hydralazine, and pro-
cainamide, with non-nucleoside inhibitors being less
effective than azacitidine [1]. Histone deacetylase
(HDAC) inhibitors are a class of compounds that can
modulate the epigenetic regulation of gene expres-
sion via histone acetylation. HDAC inhibitors are the
most commonly used epigenetically active agents in
the treatment of cancer [5]. Over the past few years, a
series of clinical trials on the use of HDAC inhibitors
in antitumor therapy have begun. By the beginning of
2020, five histone deacetylase inhibitors were approved
by the US Food and Drug Administration (FDA) for
the treatment of oncological diseases: vorinostat,
romidepsin, belinostat, panobinostat, and chidamide
[6]. Moreover, a series of perspective agents are cur-
rently under the phase II/I1I clinical trial: valproic acid,
mocetinostat, entinostat, trichostatin A, phenylacetate,
phenylbutyrate, tacedinaline, etc. [1]. Over the past 15
years, an essential role of impaired activity of histone
methyltransferases (HMTs) in tumorigenesis has
been demonstrated. For this reason, another class of
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compounds, namely HMT inhibitors, was introduced
among epigenetic modulators [7]. Other important
antitumor targets are methyltransferases SUV391H,
EZH2, MLL, Nsdl, and RIZ. A series of selective
HMT inhibitors are currently under the phase /I
clinical study: pinometostat, GSK2816126, CPI-1205,
TCP, and 4SC-202. In 2020, the FDA approved a selec-
tive inhibitor of EZH2 methyltransferase, tazemetostat,
for the treatment of metastatic or locally advanced
epithelioid sarcoma that cannot be completely resected
[8]. Thus, the search for new epigenetically active
drugs is a promising trend in the field of chemotherapy
of oncological diseases.

The search, development, as well as preclinical and
clinical studies of a new drug require a lot of fund-
ing and last 5—15 years. For this reason, a promising
trend in pharmacology in general and, in particular,
and oncology is the drug repurposing. The search for
agents with inhibitory activity against HDAC, DNMT,
and HMT among the approved drugs that are already
used in medical practice is undertaken. For this reason,
protein kinase inhibitors approved for the treatment
of various tumors (gefitinib, imatinib, pazopanib), as
well as drugs undergoing clinical trials (ponatinib and
enzastaurin), were chosen as the object of the current
study. The multi-target action of these small molecules
allowed suggesting their potential effect on the system
of epigenetic regulation of transcription [9]. Another
reason for choosing this group of drugs was the ability
of natural polyphenolic compounds known as modula-
tors of epigenetic regulatory enzymes to inhibit protein
kinases [10].

Identification of epigenetically active agents
among numerous drugs was complicated by the lack
of available test systems that allow quick and inex-
pensive screening of drugs for their ability to exert
an epigenetic effect [11]. For this, we decided to use
HeLa TI cells, which were obtained for the study of
the mechanisms of retroviral epigenetic silencing in
the laboratory of prof. A.M. Skalka in 2007. HeLa
TI is a population of cells carrying a retroviral vec-
tor integrated into various sites of the genome and
containing epigenetically repressed GFP reporter
gene. Analysis of the mechanisms of the GFP reporter
gene suppression revealed the involvement of more
than 15 different factors of epigenetic regulation of
transcription in this process [12, 13]. HeLa TI cells
are sensitive to HDAC and DNMT, as well as HMT
inhibitors [14].

The aim of the current work was to study the ability
of five antitumor protein kinase inhibitors to reactivate
the expression of epigenetically repressed GFP, as
well as to analyze the effect of epigenetically active
drugs on: 1) acetylation and methylation of histones
H3 and H4; 2) integrated DNA methylation; 3) HAT
and HDACI enzyme activity; 4) expression level of the
genes encoding for epigenetic regulatory enzymes.
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Material and methods

Cell lines and reagents

The following cell cultures were used in the study:
HeLa TI, a polyclonal population of HeLa cells con-
taining a vector integrated into genome (derived from
avian sarcoma retrovirus) carrying epigenetically
repressed GFP; CasKi, an epidermoid cervical carci-
noma cell line, characterized by higher level of DNA
methylation than HeLa cells [15, 16]. The cells were
cultured in DMEM medium supplemented with 10%
fetal bovine serum (Biosera), L-glutamine (2 mM,
PanEco, Russia), and penicillin/streptomycin mixture
(50 units, PanEco, Russia) in 5 % CO, at 37 °C. Upon
reaching 80 % confluence, the cells were passaged at
arate of 1:5.

For the study, the following drugs were selected
from the pharmacological group of protein kinase
inhibitors: gefitinib, imatinib, pazopanib, ponatinib,
and enzastaurin (all provided by Sellek). Compounds
with epigenetic activity that were used as positive
controls, namely trichostatin A and vorinostat (histone
deacetylase inhibitors), as well as azacitidine (inhibitor
of DNA methyltransferases) were obtained from Sig-
ma Aldrich. All of the above-mentioned compounds
were dissolved in DMSO to obtain stock solutions;
the solvent concentration did not exceed 0.1% in the
culture medium.

Evaluation of drug cytotoxicity

Cytotoxicity of protein kinase inhibitors was mea-
sured using the MTT test [17]. The cells were seeded
at 5x10° cells per well in 96-well flat-bottom plates
and incubated overnight. Next, serial dilutions of the
preparations were added in triplicate and incubated
for 72 h under standard conditions (37 °C, 5 % CO,).
After this, the cells were treated with 3-[4,5-dime-
thylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
(MTT, Dia-M, Russia). After four hours of exposure
to MTT, the medium was removed, and 100 pl of
DMSO was added. The optical density of the solu-
tion was measured at 540 nm using a Multiskan Sky
microplate spectrophotometer (Thermo Scientific).
The cytotoxicity index was determined using 0.1 %
DMSO as a negative control.

Analysis of the drug ability to reactivate the ex-
pression of epigenetically repressed GFP gene in the
HelLa TI cell test system

Flow cytometry was used to analyze the ability of
the drugs to reactivate the expression of epigenetically
repressed GFP. Cells were seeded in 24-well plates
at 2.5x10* cells per well and treated with gefitinib,
imatinib, pazopanib, ponatinib (25 uM IC,; for all
drugs) and enzastaurin (IC,, 30 uM) 24 h later. After
24-hour incubation, the medium in the plates was
replaced with fresh one, and the cells were incubated
for another 48 h. Next, the cells were detached from
the culture plates using 0.25 % trypsin-EDTA solution
(PanEco, Russia). The relative number of GFP-positive
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cells was assessed using BD FACSCanto™ II flow
cytometer. Cells treated with trichostatin A (TCA), a
histone deacetylase inhibitor, were used as a positive
control. An antitumor drug was considered epigeneti-
cally active if GF'P reactivation was observed in 12 %
of the cells or more. The proportion of GFP-positive
cells among 0.01 % DMSO-treated cells did not ex-
ceed 4.5-5 %.

Histone extraction

Cells were seeded in 60-mm Petri dishes (3x10°
cells per dish) and incubated overnight in standard
conditions. Next, enzastaurin (30 pM) was added, and
the cells were incubated for 4 h, 12 h, 24 h, and 72 h.
Abcam acid extraction protocol and trichloroacetic
acid precipitation protocol presented by Shechter et al.
[18] were used for obtaining a histone fraction.

Analysis of the effect of enzastaurin on the level
of histone modifications

Western blotting was used to analyze the effect of
enzastaurin on acetylation and methylation of H3 and
H4 histones. Histone proteins were separated by 15 %
PAGE and transferred to nitrocellulose membranes with
a pore size of 0.22 um (100 mA, 40 min). The mem-
branes were then blocked in TBST buffer containing
5 % skim milk at room temperature for 30 min. Abcam
antibodies to the following histone modifications were
used in the study: H3acK9 + H3acK14 + H3acK18 +
H3acK23 +H3acK27 (ab47915), H3K9me3 (ab8898),
H3K4me3 (ab8580), H4K20me3 (ab9053), and H4
(ab10158). Membranes were incubated with primary
antibodies at +4 °C overnight, washed with TBST and
incubated with secondary antibodies (ab6721). For
protein detection, Clarity™ Western ECL Substrate
visualization reagent (Bio-Rad) and ImageQuant
LAS 4000 digital imaging system (GE Healthcare)
were used. Densitometric analysis of the blots was
performed using ImageJ software. The results were
calculated as described by Li et. al. [19]. All experi-
ments were performed in triplicate.

Preparation of nuclear extracts

HeLa TI cells were seeded in 60-mm Petri dishes
(8x10° cells per dish). After the cells were attached to
the substrate, they were incubated with enzastaurin
(30 uM) for 24 h. The nuclear fraction of the cells was
obtained according to the Abcam protocol (Nuclear
extraction and fractionation protocol, https://www.
abcam.com/protocols/nuclear-extraction-protocol-nu-
clear-fractionation-protocol). Cells were washed with
PBS, passed through a 26 G needle and centrifuged at
720 g for 5 min for precipitation of a nuclear fraction.
Then, the precipitate was resuspended and passed
through a 23 G needle, centrifuged in the same con-
ditions, and the resulting precipitate was resuspended
in ddH,O. For DNA destruction, the suspension was
sonicated for 3 seconds at an amplitude of 20 pm using
a Soniprep 150 Plus ultrasonic disintegrator (MSE).
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The effect of enzastaurin on HAT activity

The effect of enzastaurin on the overall activity of
HAT was analyzed using Histone Acetyltransferase
Activity Assay Kit (ab65352, Abcam) according to the
manufacturer’s instructions. A total of 50 pg of nuclear
extract was incubated with HAT I/Il and NADH-
generating enzyme in HAT assay buffer for 4 h at 37
°C. The optical density was measured at 450 nm in a
Multiskan Sky microplate spectrophotometer (Thermo
Scientific), and an active nuclear extract was used as a
positive control. HAT activity was expressed in pM/ug
as indicated by the manufacturer, after which the activ-
ity was calculated in % relative to the negative control.
All experiments were performed in triplicate.

The effect of enzastaurin

on the level of HDACI

To analyze the effect of enzastaurin on the level
of HDACI, the nuclear fraction of the proteins was
separated by 10 % PAGE, and then standard Western
blotting was performed (as previously described).
Abcam antibodies to HDAC1 (ab53091) and H3 his-
tone (ab18521), which served as a load control, were
used in the study. Protein detection was performed as
described above. Densitometric analysis of the blots
was conducted using ImagelJ software. All experiments
were performed in triplicate.

The effect of enzastaurin

on the integrated DNA methylation

The effect of enzastaurin on integrated DNA
methylation was analyzed using a commercial EpiJet
kit (K1441, Thermo Scientific) based on methylation-
sensitive Hpall/Mspl restriction assay. CasKi cells
were seeded in 6-well plates (1.5x10° cells per well).
After the cells were attached to the substrate, they were
incubated with enzastaurin (2 pM) or the demethy-
lating agent azacitidine (1 pM) as a positive control
for 72 h. After every 24 h of incubation, half of the
culture medium was replaced with fresh medium, and
the drugs under study were added to the concentration
indicated above. Next, genomic DNA was extracted
from the cells using the GeneJET Genomic DNA
Purification Kit (K0721, Thermo Scientific), and the
enzymatic reaction with Hpall and Mspl restriction
enzymes was performed according to the manufac-
turer’s protocol. Restriction products were analyzed
by 1 % agarose gel electrophoresis and detected on a
Typhoon 9400 scanner (GE Healthcare). Densitometric
analysis of the obtained images was carried out using
the ImagelJ software. All experiments were performed
in triplicate.

The effect of enzastaurin

on the genes of chromatin-modifying enzymes

Analysis of the expression level of chromatin-mod-
ifying enzyme genes was carried out using quantitative
real-time RT-PCR. Cells were seeded in 60-mm Petri
dishes (8x10° cells per dish) and treated with enzastau-
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rin at concentrations of 30, 15 and 7.5 pM after 16-20
h. After 24 h, the cells were removed from the substrate,
and the total RNA was extracted using the GeneJET
RNA Purification Kit (Thermo Scientific). Next, 2 ug
of cDNA were obtained using the reverse transcription
kit (Synthol). Sequences of the primers for PCR are
presented in table 1. Real-time PCR was performed
using a reagent kit for RT-PCR (Syntol). Data were
analyzed by calculating the threshold cycle value (Ct)
with normalization to the expression of the housekeep-
ing gene ACTB in each sample. Next, the samples were
normalized to the negative control (0.1 % DMSO).

Ta6bnuua 1/Table 1
Nucleotide sequences of the primers used in the
study

HykneoTuaHble nocneaoBaTeNibHOCTH
ncnonb3yeMbiX NpaiMepoB

SR [NocnenoBarensrOCTS 5'-3'/Sequences 5'-3'
Name
CACCCATTCTTCCCGTTCTT Forward
HDACI
GGCATTTCAGGAGTTTGTCTTAT Reverse

GCAAAGAAGAAACAGCATTGAAG Forward

SIRTI
ATGAATGCTGAGTTGCTGGAT  Reverse
AGCACAGAAGTCAACCCAAA  Forward
DNMTI
TGCGTCTCTTCTCCTCCTTT Reverse
AGCCCAAGGTCAAGGAGATT  Forward
DNMT3A
TACGCACACTCCAGAAAGC Reverse
CAACAGCATCGGCAGGAA Forward
DNMT3B
GTCCTCTGTGTCGTCTGTGA Reverse
AT GCGATAGAGGCACAACAGAA  Forward
TGTATTGTTCGGCATCACTCA Reverse
CTGGCAGACCTCGGAAAGAA  Forward
CREBBP
CTGGCGCCGCAAAAACT Reverse
EP300 CGCTTTGTCTACACCTGCAA Forward
TGCTGGTTGTTGCTCTCATC Reverse
GCGGGCTATTCTCTCACTTG Forward
SETDIA
CCCTTCATCCGCCTTGGT Reverse
GGATGTTTGTGCGGGTAGAC Forward
SETDIB
AGACACACAACGGAAACACT  Reverse
CCCGTGTAGCATAAAAGCAGC  Forward
SUV420H1
CCAGTTTCACCAAGGAACCAG Reverse
CGTGCTTGGAAGAAGAATGA  Forward
SUV420H?2
GCAGTCATGGTTGATGAAGG Reverse
GCTAGGCCCGAATGTCGTTA Forward
SUV39H1
TAGAGATACCGAGGGCAGGG Reverse
GCAGGACGAACTCAACAGAA  Forward
SUV39H?2
CAACCAAAGGTGGCTTCATT Reverse
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Relative expression of the genetic locus (Exp) was
calculated using the 2-AACt method.

Statistical methods

Statistical analysis of the data was performed using
Microsoft Excel. To assess the significance of differ-
ences between the groups, including the expression

levels, a paired two-sample Student’s t-test with a level
of statistical significance of p<0.05 was used.

Results and Discussion

Impaired regulation of protein kinase activity leads
to various pathophysiological disorders, in particular,
hyperproliferation of tumor cells, stimulation of inva-
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Puc. 1. AHanu3 anureHeTn4eckon akTMBHOCTU NPOTUMBOOMYXOSIEBbLIX NpenapaToB U3 rpynnbl UHIMOUTOPOB NPOTENHKMHA3 B TECT-CUCTEME
HelLa TI: A, B. AHanua gonu GFP-nonoxutenbHbix knetok B nonynsauum Hela Tl npu o6pabotke 0,1 % AMCO un npu obpaboTke nHru-
BUTOPOM I’MCTOHOBbLIX AeaLeTunas TPUXOCTaTMHOM A C MOMOLLIbIO hryopeCcLeHTHOW MUKPOCKONMK (A) 1 MPOTOYHON LIMTOITyopuMeTpumn
(B). C. PesynbraThl NPOTOYMHOW LMTOMIYOPMMETPUN ANA Uccnedyembix npenapartoB. Bece pesynbratsl npeactaenexsl B Buge M + SD.
[MpumeyaHue: * — pa3nuumsa CTaTUCTUYECKN 3Ha4YMMbl MO CPaBHEHUIO C KoHTponem (p<0,05)

Fig. 1. Analysis of the epigenetic activity of antitumor drugs of the group of protein kinase inhibitors in the HeLa Tl cell test system:

A, B. Analysis of the proportion of GFP-positive cells in the HeLa Tl cell population treated with 0.1 % DMSO and histone deacetylase
inhibitor trichostatin A (TSA) by fluorescence microscopy (A) and flow cytometry (B). C. Flow cytometry results of the drug analysis.
All data are presented as M + SD.

Notes; * — differences are statistically significant as compared to the control (p<0.05)
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sion and metastasis [20]. In this regard, inhibition of
protein kinases is an effective approach to treat cancer.
To date, 37 drugs of this group have been approved for
the treatment of various oncological diseases, includ-
ing non-small cell lung carcinoma, acute lymphoblas-
tic leukemia, chronic myeloid leukemia, breast cancer,
etc. [21]. The ability of protein kinase inhibitors to
influence gene expression via epigenetic regulation
has not been studied yet. The list of the drugs used in
the current study includes agents that were approved
for antitumor therapy: (1) gefitinib, a selective inhibi-
tor of the epidermal growth factor receptor (EGFR)
tyrosine kinase used for the treatment of non-small cell
lung cancer; (2) imatinib, a Ber-Abl tyrosine kinase
inhibitor used to treat chronic myeloid leukemia; (3)
pazopanib, a non-selective tyrosine kinase inhibitor,
which is active against vascular endothelial growth
factor receptors (VEGFRs), platelet-derived growth
factor receptors (PDGFRs), fibroblast growth fac-
tor receptors (FGFRs) and used in the treatment of
kidney cancer; as well as two drugs that are currently
undergoing clinical trials, namely (4) ponatinib and
(5) enzastaurin. Ponatinib is a multi-target inhibitor
of tyrosine kinases; it was shown to exert antitumor
activity against chronic myeloid leukemia and acute
lymphoblastic leukemia [22, 23]. Enzastaurin is a
selective inhibitor of CP protein kinase and currently
undergoing phase III clinical trials in patients with
diffuse large B-cell lymphoma [24].

At the first stage, we analyzed the ability of non-
toxic doses of gefitinib, imatinib, pazopanib, ponatinib,
and enzastaurin to reactivate the expression of epige-
netically repressed GFP in HeLa TI test system. As
shown by flow cytometry, treatment with enzastaurin
results in a 6-fold increase in the proportion of GFP-
positive cells. No statistically significant increase in
the number of GFP-expressing cells was detected for
the other drugs (Fig. 1).

The obtained data indicate that, of the tested drugs,
only enzastaurin has an effect on epigenetic regulation
of gene expression. For this reason, further work was
aimed at analysis of the mechanisms of the epigenetic
effect of enzastaurin, in particular, at the study of its
effect on the profile of histone modifications and DNA
methylation.

Histone acetylation/deacetylation is one of the key
mechanisms of chromatin remodeling. Acetylation
of histones at lysine residues neutralizes the positive
charge of the amino acid and reduces the interaction
between the N termini of histones and DNA phosphate
groups [3]. This, in its turn, promotes the transforma-
tion of silent heterochromatin into transcriptionally
active euchromatin. A decrease in the level of lysine
acetylation at positions H3K9, H3K 14, H3K 18, and
H4K16 was shown to be associated with promotion
and progression of tumor growth, as well as with tumor
resistance to chemotherapy [25].

Changes in the global level of H3 histone acetyla-
tion caused by enzastaurin were analyzed by Western
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blotting using antibodies to a number of acetylation
sites (H3acK9+H3acK14+H3acK18+H3acK23+H3a
cK27). The obtained results indicate that the effect of
enzastaurin results in a more than 1.5-fold increase in
the level of histone acetylation (Fig. 2A).

Changes in the level of histone acetylation are the
result of an altered balance in the activity of histone
acetyltransferases (HATs) and deacetylases (HDACS).
We demonstrated that treatment of the cells with en-
zastaurin did not change the activity of histone acetyl-
transferases and did not affect the expression level of
the corresponding genes (Fig. 2B, 2C).

Among histone deacetylases, enzymes HDACI1
and HDAC?2 [26], as well as SIRT1 deacetylase [27],
had the greatest contribution to the regulation of his-
tone modifications. We demonstrated that enzastaurin
resulted in a decreased HDACI expression both at
the mRNA and protein levels (1.8-fold decrease). A
slight (1.5-fold) decrease in SIRT'] expression was also
shown (Fig. 2D, 2E).

In contrast to acetylation, methylation of histones
H3 and H4 does not change the total charge of the
molecule, and the effect on transcription occurs due
to interaction of the effector molecules with modified
bases [1]. At the same time, methylation of the amino
acid residues of histones can lead to both gene silenc-
ing (lysine methylation at H3K9, H3K27, and H4K20
positions) and to induction of gene expression (lysine
methylation at H3K4, H3K36, and H3K79 positions),
that depends on the modification site and the number
of methyl groups (mono-, di-, and trimethylation)
[28]. Using Western blotting, we analyzed the effect
of enzastaurin on the following sites: H3K4me3,
H3K9me3, H4K20me3; no effect of enzastaurin on
the methylation level of these sites was observed (Fig.
3A). The data obtained are consistent with the results
of real-time PCR, which indicate that the drug has no
effect on the expression level of the corresponding his-
tone methyltransferases: (1) SUV39H1 and SUV39H?2
(methylation at the H3K9 site), (2) SUV420H1 and
SUV420H?2 (methylation at H4K20), and (3) SETDI1A4
u SETD1B (methylation of the H3K4 site) (Fig. 3B).

Another major epigenetic mechanism of gene
expression regulation is DNA methylation. Hyperm-
ethylation of the promoters of tumor suppressor genes
inhibits their expression, and, by this way, contributes
to the initiation of carcinogenesis and tumor progres-
sion [29, 30]. Methylation-sensitive Hpall/Mspl re-
striction assay demonstrated that enzastaurin decreased
the level of DNA methylation, which was indicated by
a higher degree of DNA cleavage by the methylation-
sensitive restriction enzyme Hpall (55.8 % compared
to the control) (Fig. 4A, 4B). Moreover, the demethyla-
tion effect of the drug was comparable with the effect
of the positive control 5-azacitidine. These results
were consistent with real-time PCR data concerning
the drug influence on the expression level of DNA
methyltransferases. Enzastaurin was shown to reduce
the mRNA level of de novo DNA methyltransferases
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Fig. 2. Analysis of the effect of enzastaurin on histone acetylation:

A. Effect of enzastaurin on H3 histone acetylation, Wetsern blotting and densitometric analysis; B. Effect of enzastaurin on the total
activity of the HAT family enzymes; C. Analysis of the effect of enzastaurin on the expression of HAT genes; D. Analysis of the effect of
enzastaurin on the expression of HDAC1 protein, Wetsern blotting and densitometric analysis; E. Analysis of the effect of enzastaurin on
the expression of SIRT1 and HDAC1 by real-time RT-PCR. The 2-AACt method was used for data analysis, ACTB was used as a refer-
ence gene, and the samples were also normalized to the negative control. All data are presented as M + SD.

Notees: * — differences are statistically significant as compared to the control (p<0.05)
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DNMT3A4 and DNMT3B (by 2.5-fold and 1.6-fold,
respectively), while the expression level of DNMT1,
which was responsible for methylation during replica-
tion, remained unchanged.

Thus, screening of the epigenetic activity of five
antitumor drugs from the group of protein kinase
inhibitors (gefitinib, imatinib, pazopanib, ponatinib, and
enzastaurin) allowed us to demonstrate for the first time
the ability of enzastaurin to reactivate the expression

of epigenetically repressed genes. Our original data
concerning enzastaurin effects demonstrate both
significant decrease of integrated DNA methylation
and inhibition of de novo methyltransferases DNMT3A
and DNMT3B expression. Also, an increase in the level
of histone acetylation under the action of enzastaurin
was shown for the first time, which is consistent with
our data on the inhibition of expression of histone
deacetylases.
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Fig. 3. Analysis of the effect of enzastaurin on histone methylation:

A. The effect of enzastaurin on the methylation of H3 and H4 histones, Wetsern blotting; B. Analysis of the effect of enzastaurin on the
expression of HMT genes by real-time RT-PCR. The 2-AACt method was used for data analysis, ACTB was used as a reference gene,
and the samples were also normalized to the negative control. All data are presented as M + SD.

Notes: * — differences are statistically significant as compared to the control (p<0.05)
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Fig. 4. The effect of enzastaurin on integrated DNA methylation:

A. Electrophoregram of the genomic DNA treated with restriction enzymes Hpall and Mspl; B. Densitometric analysis of the bands
of Hpall-restricted DNA relative to the genomic DNA; C. Real-time RT-PCR analysis of the effect of enzastaurin on the expression of
DNMT genes. All data are presented as M + SD.

Notes: * — differences are statistically significant as compared to the control (p<0.05)
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