DOI: 10.21294/1814-4861-2018-17-4-81-87

УДК: 616-006.441-073.756.8

Для цитирования: Чернов В.И., Дудникова Е.А., Зельчан Р.В., Кравчук Т.Л., Данилова А.В., Медведева А.А., Синилкин И.Г., Брагина О.Д., Гольдберг В.Е., Гольдберг А.В., Фролова И.Г. Однофотонная эмиссионная компьютерная томография с ^{99m}Tc-1-Тио-D-глюкозой в диагностике и стадировании злокачественных лимфом: первый опыт использования. Сибирский онкологический журнал. 2018; 17 (4): 81–87. – doi: 10.21294/1814-4861-2018-17-4-81-87. For citation: Chernov V.I., Dudnikova E.A., Zelchan R.V., Kravchuk T.L., Danilova A.V., Medvedeva A.A., Sinilkin I.G., Bragina O.D., Goldberg V.E., Goldberg A.V., Frolova I.G. The first experience of using ^{99m}Tc-1-thio-d-glucose for single-photon emission computed tomography imaging of lymphomas. Siberian Journal of Oncology. 2018; 17 (4): 81–87. – doi: 10.21294/1814-4861-2018-17-4-81-87.

ОДНОФОТОННАЯ ЭМИССИОННАЯ КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ С 99mTC-1-TИO-D-ГЛЮКОЗОЙ В ДИАГНОСТИКЕ И СТАДИРОВАНИИ ЗЛОКАЧЕСТВЕННЫХ ЛИМФОМ: ПЕРВЫЙ ОПЫТ ИСПОЛЬЗОВАНИЯ

В.И. Чернов^{1,2}, Е.А. Дудникова¹, Р.В. Зельчан¹, Т.Л. Кравчук¹,

А.В. Данилова¹, А.А. Медведева¹, И.Г. Синилкин¹, О.Д. Брагина¹,

В.Е. Гольдберг¹, А.В. Гольдберг¹, И.Г. Фролова¹

Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук, г. Томск, Россия¹

Россия, 634009, г. Томск, пер. Кооперативный, 5¹

ГБОУ ВПО «Сибирский государственный медицинский университет» Минздрава России, г. Томск, Россия²

Россия, 634050, г. Томск, Московский тракт, 2²

Аннотация

Целью исследования явилась оценка возможности применения однофотонной эмиссионной компьютерной томографии (ОФЭКТ) с инновационным отечественным радиофармпрепаратом (РФП) ^{99m}Tc-1-тио-D-глюкоза (^{99m}Tc-TГ) в диагностике и стадировании злокачественных лимфом. **Материал** и методы. В исследование включены 15 пациентов (средний возраст 50,7±18,3 года) с впервые диагностированными злокачественными лимфомами. Сцинтиграфическое исследование проводили на гамма-камере E.CAM 180 фирмы "Siemens" (Германия) через 4 часа после введения РФП в дозе 500 МБк. **Результаты.** По данным ОФЭКТ, патологическое включение ^{99m}Tc-TГ в лимфатические узлы наблюдалось у 14 (93 %) из 15 пациентов. У одной пациентки не удалось визуализировать определяемый с помощью компьютерной томографии (КТ) единичный, увеличенный поднижнечелюстной лимфатический узел. Этот ложноотрицательный результат исследования связан с физиологичным усилением аккумуляции ^{99m}Tc-TГ в орофарингеальной области. Сложности, связанные с высокой фоновой активностью крови, отмечались при визуализации паратрахеальных, парааортальных и паракардиальных лимфатических узлов. Наиболее часто патологическое накопление РФП отмечалось в аксиллярных, над- и подключичных, а также шейных лимфатических узлах. С помощью ОФЭКТ с ^{99m}Tc-TГ экстралимфатические гиперметаболические участки определялись у 7 (78 %) из 9 пациентов с ранее диагностированным экстранодальным поражением. Кроме того, у одной пациентки по данным ОФЭКТ был выявлен гиперметаболический очаг в легком, не обнаруженный по результатам КТ. В исследуемой выборке пациентов по данным КТ и ОФЭКТ с 99mTc-ТГ наличие поражения костного мозга наблюдалось в одном случае. Кроме того, сцинтиграфическое исследование позволило выявить гиперметаболические участки в лопатке у пациента с интактной по результатам КТ костной тканью. Заключение. Результаты исследования позволяют рекомендовать использование 99mTc-TГ ОФЭКТ в качестве дополнительного диагностического метода для обследования пациентов со злокачественными лимфомами для стадирования заболевания.

Ключевые слова: лимфомы, лимфома Ходжкина, неходжкинские лимфомы, однофотонная эмиссионная компьютерная томография, ^{99m}Tc-1-Thio-D-глюкоза.

THE FIRST EXPERIENCE OF USING 99MTC-1-THIO-D-GLUCOSE FOR SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY IMAGING OF LYMPHOMAS

V.I. Chernov^{1,2}, E.A. Dudnikova¹, R.V. Zelchan¹, T.L. Kravchuk¹, A.V. Danilova¹, A.A. Medvedeva¹, I.G. Sinilkin¹, O.D. Bragina¹, V.E. Goldberg¹, A.V. Goldberg¹, I.G. Frolova¹

Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia¹ 5, Kooperativny Street, 634009-Tomsk, Russia¹ National Research Tomsk Polytechnic University, Tomsk, Russia² 30, Lenina Avenue, 634050-Tomsk, Russia²

Abstract

Introduction. The purpose of this study was to evaluate the feasibility of using 99mTc-TG SPECT in the detection and staging of malignant lymphoma. Materials and methods. Fifteen patients with newly diagnosed malignant lymphoma underwent 99mTc-TG SPECT. Six patients had Hodgkin's lymphoma and 9 patients had aggressive forms of non-Hodgkin's lymphoma (NHL): diffuse large B-cell lymphoma (7 cases), B-cell follicular lymphoma (1 case), and lymphoma from B cells in the marginal zone (1 case). Stage IIA was diagnosed in 5 patients, stage IIB in 1, stage IIIA in 1, stage IVA in 4 and stage IVB in 4 patients. Results. Pathological 99mTc-TG uptake in lymph nodes was observed in 14 (93 %) of the 15 patients. In one patient, the enlarged submandibular lymph node (16 mm in size) detected by CT was not visualized by 99mTc-TG SPECT. This false-negative result was likely to be associated with increased accumulation of 99mTc-TG in the oropharyngeal region. There were difficulties in the visualization of paratracheal, para-aortic and paracardial lymph nodes. These difficulties were associated with a high blood background activity, which persisted even 4 hours after intravenous injection of 99mTc-TG. Software-based SPECT and CT image fusion allowed visualization of these lymph nodes. The pathological 99mTc-TG accumulation in axillary, supraclavicular, infraclavicular and cervical lymph nodes was observed most often. Extranodal involvement was seen in 9 patients. 99mTc-TG SPECT identified extranodal hypermetabolic lesions in 7 (78 %) of these patients. In one patient, hypermetabolic lesion in the lung detected by 99mTc-TG SPECT was not detected on CT image. CT identified bone marrow involvement in the pelvic and scapula in 1 patient. The use of 99mTc-TG SPECT allowed the visualization of hypermetabolic bone tissue lesions in this patient (Figure 4). In addition, in a patient with intact bone tissue on CT, 99mTc-TG SPECT detected hypermetabolic lesions in the iliac bone. Conclusion. 99mTc-1-Thio-D-glucose demonstrated increased uptake in nodal and extranodal sites of lymphoma. The results indicate that SPECT with 99mTc-1-Thio-D-glucose is a feasible and useful tool in the detection and staging malignant lymphoma.

Keywords: lymphomas, Hodgkin's lymphoma, non-Hodgkin's lymphomas, single-photon emission computed tomography, 99mTc-1-Thio-D-glucose.

Introduction

Tumors of the hematopoietic and lymphoid tissues are relatively frequent in Russia, accounting for approximately 5 % of all cancers in men and 4.6% in women, and 5 % of all cancer deaths. In 2016, the incidence rate for tumors of the hematopoietic and lymphoid tissues was 19.58 per 100 000 population. The average annual growth rate is 1.78 % [1]. Among lymphoid and hematopoietic tissue tumors, Hodgkin lymphoma (HL) is observed most frequently (30 %) [2]. Among non-Hodgkin's lymphomas (NHLs), large B-cell lymphoma (33 %) and B-cell follicular lymphoma (22 %) are the most common lymphomas. Other types of lymphomas occur with a frequency of less than 10 % [3].

Accurate staging for lymphoma enables better prognostication and choice of the most appropriate treatment [4]. Thus, the estimated recurrence-free 10-year survival is highest in patients with stage I disease (90–95 %), slightly lower (80–85 %) in patients with stage II, significantly lower (70 %) in stage III and does not exceed 30–50 % in stage IV [4]. The Ann Arbor staging system for the assessment of lymphoma includes computed tomography (CT)

scans [5]. However, diagnostic capabilities of CT are limited when visualizing lymph nodes of normal size. Moreover, in patients with retroperitoneal lymph nodes measuring from 1 to 3 cm, the likelihood of detection of a specific lesion with CT is only 50 %. Even a significant increase in the lymph nodes size (more than 3 cm) is associated with their benign hyperplasia in 25 % of cases. CT has low sensitivity in the diagnosis of diffuse lesions of the liver, spleen and bone marrow [6]. 18-F-fluorodeoxyglucose (¹⁸F-FDG) – positron emission tomography (PET), and more recently PET/ computed tomography (CT), is the most sensitive and specific imaging technique currently available for patients with lymphoma.

Numerous studies indicate that PET has proved very useful for staging and therapy response of lymphoma [4–10]. The widespread use of PET in our country is limited due to the high cost and low number of PET centers, which are located mainly in the central regions of the Russian Federation. At the same time, in Russia there are more than 200 nuclear medicine departments equipped with SPECT scanners. Therefore, the use of radiopharmaceuticals labeled with gamma-emitting nuclides remains relevant. ^{99m}Tc-1-thio-D-glucose

(99mTc-TG) is the promising radiopharmaceutical for lymphoma imaging. This radiopharmaceutical is a glucose derivative complex in the form of 1-thio-Dglucose and ^{99m}Tc, in which 1-thio-D-glucose works as a radioisotope label transport (99mTc). A special feature of the pharmacokinetics of the radiopharmaceutical is the absence of its accumulation in the brain and myocardium. Tomsk NIIC and Tomsk Polytechnic University successfully completed the project «Preclinical studies of radiopharmaceutical on the basis of 99mTc labeled glucose derivative for tumor imaging» (№ 14.N08.11.0033). The laboratory regulations for 99mTc-TG preparation were developed, the analytical methods for 99mTc-TG quality control were elaborated and samples of the radiopharmaceutical were synthesized and analyzed in accordance with established methodology.

It was proved that ^{99m}Tc-TG was characterized by high accumulation in tumor cells in vivo and in vitro [11–15].

The purpose of this study was to evaluate the feasibility of using ^{99m}Tc-TG SPECT in the detection and staging of malignant lymphoma.

Materials and Methods

The study included 15 patients (mean age 50.7±18.3, range: 25 to 75 years) with newly diagnosed malignant lymphomas. None patients had previously received chemotherapy. The diagnosis was verified by immunohistochemical study. Six patients had HL and nine had aggressive forms of NHL: diffuse large B-cell lymphoma (7 cases), B-cell follicular lymphoma (1 case), and lymphoma from B cells in the marginal zone (1 case). Stage IIA was diagnosed in 5 patients, stage IIB in 1, stage IIIA in 1, stage IVA in 4 and stage IVB in 4 patients.

Single photon emission computed tomography was performed using a double-head gamma-camera (E.CAM 180, Siemens) equipped with parallel high energy collimators. The injection of ^{99m}Tc-TG at a dose of 500 MBq was made intravenously into the antecubital vein. Planar imaging began 4 hours after injection. Images were obtained with the patients lying in the supine position with the arms raised over the head and with the face, skull, chest, neck, abdomen, pelvis and groin included into the field of view. A total

of 32 projection images were recorded into a 64×64 matrix (30 seconds per projection) without hardware magnification. The scan images were analyzed using the manufacturer software (e.soft, Siemens, Germany). Three-dimensional images of the chest, sagittal, transverse and coronal sections were obtained. Single photon emission computed tomography scans were visually assessed. Images of the contralateral areas were compared, and asymmetrically increased radiotracer uptake was considered pathological.

Results and Discussion

The pathological ^{99m}Tc-TG uptake in lymph nodes was observed in 14 (93%) of the 15 patients. In a patient with diffuse large B-cell lymphoma, a single enlarged submandibular lymph node (16 mm in size) detected by CT was not visualized by 99mTc-TG SPECT. This false-negative result is likely to be associated with the physiological enhancement of 99mTc-TG accumulation in the oropharyngeal region. There were difficulties in the visualization of paratracheal, para-aortic and paracardial lymph nodes. These difficulties were associated with a high background activity, which persisted even 4 hours after intravenous injection of 99mTc-TG. Software-based SPECT and CT image fusion allowed visualization of these lymph nodes. The pathological 99mTc-TG accumulation in axillary, supraclavicular, infraclavicular and cervical lymph nodes was observed most often Extranodal lesions were observed in 9 patients (lung in 3 patients, liver in 2, spleen in 2, stomach in 2 and parotid salivary gland in 1). 99mTc-TG SPECT identified extranodal hypermetabolic lesions in 7 (78%) of these patients. 99mTc-TG SPECT detected lesions in the lungs in 2 cases, in the liver in one, in the spleen in one, in the stomach in one and in the parotid salivary gland in one (Figure 2). In one patient, 99mTc-TG SPECT identified hypermetabolic lesion in the lung that was not detected by CT (Figure 3).

18F-FDG PET/CT was found to be superior to CT in the detection of bone marrow lesions in patients with lymphomas [16]. CT allows visualization of such pathological lesions only in the presence of bone destruction. CT detected bone marrow involvement in the pelvic and scapula in 1 patient. The use of ^{99m}Tc-TG SPECT allowed the visualization of hypermetabolic

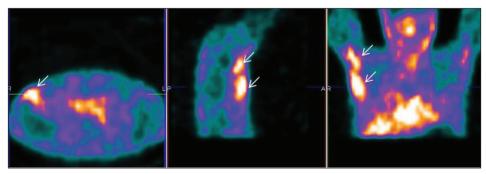


Figure 1. 99mTc-TG SPECT images of a patient with Hodgkin's lymphoma, nodular sclerosis, stage IIA, lesions of right axillar and right pectoral lymph nodes (arrows)

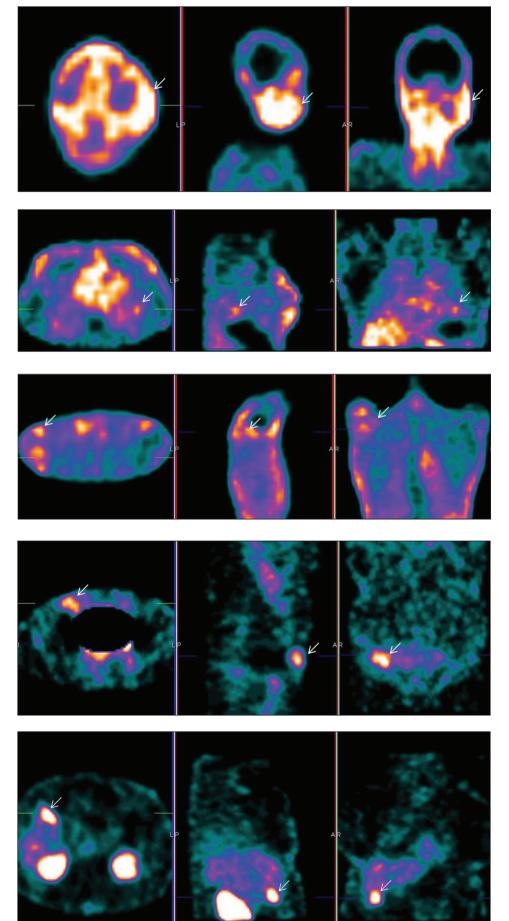


Figure 2. 99mTc-TG SPECT images of a patient with diffuse large B-cell lymphoma, germinogenic type, stage IIA (bulky) with lesions of the left parotid gland (arrows)

Figure 3. 99mTc-TG SPECT images of a patient with Hodgkin's lymphoma, nodular sclerosis, IIA stage with lesions of the left lung (arrows)

Figure 4. 99mTc-TG SPECT images of a patient with B-diffuse large-cell lymphoma, stage IVB, with lesions of cervical lymph nodes, pelvic bones and right scapula. Hypermetabolic lesion in the right scapula is seen (arrows)

Figure 5 99mTc-TG SPECT images of a patient with diffuse large B-cell lymphoma, germinogenic type, stage IVB with lesion of the left submandibular salivary gland, right inguinal lymph node, lymph nodes of the abdominal cavity, spleen. Hypermetabolic lesion the iliac bone is visualized (arrows)

Figure 6. 99mTc-TG
SPECT images of a patient
with diffuse large B-cell
lymphoma, germinogenic
type, stage IIB with lesion of
the left submandibular and
paratracheal lymph nodes.
Concomitant diagnosis: chronic
cholecystitis. Hypermetabolic
lesion in the gallbladder is
visualized (arrows)

bone tissue lesions in this patient (Figure 4). In addition, in a patient with intact bone tissue on CT, ^{99m}Tc-TG SPECT detected hypermetabolic lesions in the iliac bone (Figure 5).

18F-FDG is characterized by its active accumulation in inflammation lesions, reducing the specificity of 18F-FDG PET/CT in cancer patients. In our study, two patients had cholecystitis as a concomitant disease; all of them had pathological ^{99m}Tc-TG uptake in the gallbladder (Figure 6). These observations indicate that it is necessary to take into account clinical patient data for the correct analysis of ^{99m}Tc-TG SPECT findings.

The mechanism of cellular uptake of colorectal carcinoma cell line HCT-116 and human lung adenocarcinoma cell line A549 was studied [17]. The levels of 99mTc-TG and 18F-FDG accumulation in HCT-116 cells were nearly similar, while the 18F-FDG uptake in A549 cell line was almost twice as much as 99mTc-TG. 99mTc-TG and 18F-FDG cellular accumulation decreased when the glucose concentration increased, and was enhanced in the presence of insulin. These facts suggest that both 18F-FDG and 99mTc-TG penetrate into the cell with the participation of glucose transport proteins. Physiologically, glucose is transported by the facilitated sodium-independent glucose transporters (GLUT1-GLUT6, and GLUT8) and by the sodiumdependent transporters (SGLT1 and SGLT2), with a variable expression level of these transporters in different human tissues. Most solid tumors exist in a hypoxic environment and prefer anaerobic glycolysis rather than aerobic glycolysis, converting glucose to lactate and producing less ATP with a smaller oxygen

ЛИТЕРАТУРА/REFERENCES

- 1. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные заболевания в России в 2014 году (заболеваемость и смертность). М.: ФГБУ «МНИОИ им. П.А. Герцена Минздравсопразвития России». 2018. 250. [Kaprin A.D., Starinskii V.V., Petrova G.V. Cancer incidence and mortality in Russia in 2014 (zabolevaemost' i smertnost'). М., 2018. 250. (in Russian)]
- 2. Рукавицын О.А. Гематология: национальное руководство. М.: ГЭОТАР-Медиа. 2015; 776. [Rukavitsyn O.A. Hematology: national guidelines. M.: GEOTAR-Media. 2015; 776. (in Russian)]
- 3. *Armitage J.O.* A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. Blood. 1997; 89(11): 3909 3918.
- 4. Новиков С.Н., Гиршович М.М. Диагностика и стадирование лимфомы Ходжкина. Проблемы туберкулеза и болезней легких. 2007; 8(2): 65 72. [Novikov S.N., Girshovich M.M. Detection and staging of Hodking's lymphoma. Problems of tuberculosis and pulmonary diseases. 2007; 8(2): 65 72. (in Russian)]5. Kwee T.C., Kwee R.M., Nievelstein R.A. Imaging in staging of malignant lymphoma: a systematic review. Blood. 2008; 111: 504–16.
- 6. Pelosi E., Pregno P., Penna D., Deandreis D., Chiappella A., Limerutti G., Vitolo U., Mancini M., Bisi G., Gallo E. Role of whole-body [18F] fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) and conventional techniques in the staging of patients with Hodgkin and aggressive non Hodgkin lymphoma. Radiol Med. 2008 Jun; 113(4): 578 90. doi: 10.1007/s11547-008-0264-7.
- 7. Freudenberg L.S., Antoch G., Schütt P., Beyer T., Jentzen W., Müller S.P., Görges R., Nowrousian M.R., Bockisch A., Debatin J.F. FDG-PET/CT in re-staging of patients with lymphoma. Eur J Nucl Med Mol Imaging. 2004 Mar; 31(3): 325 9.
- 8. Hutchings M., Loft A., Hansen M., Pedersen L.M., Berthelsen A.K., Keiding S., Specht L. Position emission tomography with or without computed tomography in the primary staging of Hodgkin's lymphoma. Haematologica. 2006; 91: 482–9.
- 9. Elstrom R.L., Leonard J.P., Coleman M., Brown R.K.J. Combined PET and low-dose, noncontrast CT scanning obviates the need for addi-

consumption. Therefore, glucose accumulation is frequently enhanced in tumors by overexpression of glucose transporters, generally GLUT1 and SGLT1 [18]. Considering the fact that both 18F-FDG and ^{99m}Tc-TG cellular uptakes are reduced in the presence of cytochalasin B, which blocks the GLUT1 channel, the authors conclude that these agents transferred into the cells mainly by GLUT1. This assumption is supported by the fact that a significant overexpression of GLUT1 in A549 and HCT-116 is described in the literature [19– 22]. Seidensticker et al. found a failed uptake inhibition of 99mTc-TG and 18F-FDG when SGLT1-3 was blocked by phloretin, suggesting that these transporter proteins are not involved in the uptake process [17]. It should be noted that in contrast to 18F-FDG, which is almost completely localized in the cytoplasm, 99mTc-TG accumulates approximately equally in the cytoplasm and cell membrane. Seidensticker et al explain this feature by the large size of the ^{99m}Tc-TG molecule, which is partially bound to GLUT1 [17]. The chemical structure of 99mTc-TG does not allow this molecule to interact with hexokinase, so 99mTc-TG is not phosphorylated (in contrast to 18F-FDG) making it unlikely that ^{99m}Tc 1-TG can be further metabolized.

Conclusion

The ^{99m}Tc-labeled glucose derivative ^{99m}Tc-TG showed a high uptake in the nodal and extranodal lesions in patients with malignant lymphoma. Therefore, we can consider ^{99m}Tc-TG SPECT as an additional diagnostic method for staging malignant lymphoma.

tional diagnostic contrast-enhanced CT scans in patients undergoing staging or restaging for lymphoma. Ann Oncol. 2008; 19: 1770–3.

- 10. Cheson B.D. Role of functional imaging in the management of lymphoma. J Clin Oncol. 2011; 29: 1844–54.
- 11. Zeltchan R., Medvedeva A., Sinilkin I., Chernov V., Stasyuk E., Rogov A., Skuridin V. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose. AIP Publishing, 2016: 1760(1): 020072
- 12. Zeltchan R., Medvedeva A., Sinilkin I., Bragina O., Chernov V., Stasyuk E., Dergilev A. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis. IOP Conference Series: Materials Science and Engineering. 2016; 012054.
- 13. Зельчан Р.В., Медведева А.А., Синилкин Й.Г., Брагина О.Д., Чернов В.И., Стасюк Е.С., Ильина Е.А., Скуридин В.С. Изучение функциональной пригодности туморотропного радиофармпрепарата 99мтс-1-ТИО-6-глюкоза в эксперименте. Молекулярная медицина. 2018; 16(3): 54 57. [Zelchan R.V., Medvedeva A.A., Sinilkin I.G., Bragina O.D., Chernov V.I., Stasyuk E.S., Ilyina E.A., Skuridin V.S. A study of the functional suitability of the tumor-neutral radiopharmaceutical 99mTc-1-TIO-D-glucose in the experiment. Molecular medicine. 2018; 16(3): 54 57. (in Russian)]
- 14. Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д. Разработка радиофармпрепаратов для радионуклидной диагностики в онкологии. Медицинская визуализация. 2016; (2): 63 66. [Chernov V.I., Medvedeva A.A., Sinilkin I.G., Zel'chan R.V., Bragina O.D. Development Radiopharmaceuticals for Nuclear Medicine in Oncology. Medical Visualization 2016; (2): 63–66. (in Russian)]
- 15. Welling M.M., Alberto R. Performance of a ^{99m}Tc-labelled 1- thiobeta-D-glucose 2,3,4,6-tetra-acetate analogue in the detection of infections and tumours in mice: a comparison with [18F]FDG. Nucl Med Commun. 2010 Mar; 31(3): 239–48. doi: 10.1097/MNM.0b013e32833501e4.
- 16. Moog F., Kotzerke J., Reske S.N. FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med. 1999; 40: 1407–13
- 17. Seidensticker M., Ulrich G., Muehlberg F.L., Pethe A., Grosser O.S., Steffen I.G., Stiebler M., Goldschmidt J., Smalla K.H., Seidensticker R.,

Ricke J., Amthauer H., Mohnike K. Tumor Cell Uptake of ^{99m}Tc-Labeled 1-Thio-β-DGlucose and 5-Thio-D-Glucose in Comparison with 2-Deoxy-2-[18F]Fluoro-D-Glucose In Vitro P. Kinetics, Dependencies, Blockage and Cell Compartment of Accumulation. Mol Imaging Biol. 2014 Apr; 16(2): 189–98. doi: 10.1007/s11307-013-0690-3.

18. Ganapathy V., Thangaraju M., Prasad P.D. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009 Jan; 121(1): 29 40. doi: 10.1016/j.pharmthera.2008.09.005.

19. Ong L.C., Jin Y., Song I.C., Yu S., Zhang K., Chow P.K. 2-[18F]-2-deoxy-D-glucose (FDG) uptake in human tumor cells is related to the expression of GLUT-1 and hexokinase II. Acta Radiol. 2008 Dec; 49(10): 1145–53. doi: 10.1080/02841850802482486.

20. Yun H., Lee M., Kim S.S., Ha J. Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma. J Biol Chem. 2005 Mar 18; 280(11): 9963–72.

21. Guo G.F., Cai Y.C., Zhang B., Xu R.H., Qiu H.J., Xia L.P., Jiang W.Q., Hu P.L., Chen X.X., Zhou F.F., Wang F. Overexpression of SGLT1 and EGFR in colorectal cancer showing a correlation with the prognosis. Med Oncol. 2011 Dec; 28 Suppl 1: S197–203. doi: 10.1007/s12032-010-9696-8.

22. Huber S.M., Misovic M., Mayer C., Rodemann H.P., Dittmann K. EGFR-mediated stimulation of sodium/glucose cotransport promotes survival of irradiated human. Radiother Oncol. 2012. 103(3): 373–379.

Received 22.06.18 Accepted 26.07.18

Funding
This study required no funding.
Conflict of interest

C-8937-2012. ORCID: 0000-0002-8218-8515.

The authors declare that they have no conflict of interest.

ABOUT THE AUTHORS

Vladimir I. Chernov, MD, DSc, Professor, Head of the Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences (Tomsk, Russia). E-mail: chernov@oncology.tomsk.ru, chernov@tnimc.ru, chernov1962@gmail.com. Researcher ID (WOS): P-1470-2014. Author ID (Scopus): 7201429550. ORCID: 0000-0001-8753-7916. Ekaterina A. Dudnikova, MD, Junior Researcher of the Chemotherapy Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences (Tomsk, Russia). E-mail: ekaterina.dudnikova@list.ru. Researcher ID (WOS):

Roman V. Zelchan, MD, PhD, radiologist of the Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences (Tomsk, Russia). E-mail: r.zelchan@yandex.ru. Researcher ID (WOS): C-8597-2012. Author ID (Scopus): 56901332100. ORCID: 0000-0002-4568-1781.

Tatyana L. Kravchuk, MD, PhD, hematologist of the Chemotherapy Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences (Tomsk, Russia). E-mail: tatkrav@bk.ru. Researcher ID (WOS): J-2342-2017. ORCID: 0000-0002-2048-3404.

Albina V. Danilova, MD, hematologist of the Chemotherapy Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences (Tomsk, Russia).

Anna A. Medvedeva, MD, PhD, Senior Researcher of the Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences (Tomsk, Russia). E-mail: medvedeva@tnimc.ru. Researcher ID (WOS): D-7455-2012. Author ID (Scopus): 57188995343. ORCID: 0000-0002-5840-3625.

Ivan G. Sinilkin, MD, PhD, Senior Researcher of the Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences (Tomsk, Russia). E-mail: sinilkin@tnimc.ru. Researcher ID (WOS): C-9282-2012. Author ID (Scopus): 6506263379. ORCID: 0000-0001-6351-6408.

Olga D. Bragina, MD, PhD, Junior Researcher of the Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences (Tomsk, Russia). E-mail: rungis@mail.ru. Researcher ID (WOS): E-9732-2017. Author ID (Scopus): 57190936256. ORCID: 0000-0001-5281-7758.

Victor E. Goldberg, MD, DSc, Professor, Head of the Chemotherapy Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences (Tomsk, Russia). E-mail: goldbergve@mail.ru. Researcher ID (WOS): C-8911-2012. Author ID (Scopus): 54420064600. ORCID: 0000-0003-4753-5283.

Alexey V. Goldberg, MD, Junior Researcher of the Radiation Diagnostics Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences (Tomsk, Russia). E-mail: agoldyyy@gmail.com. Researcher ID (WOS): J-6951-2017. Author ID (Scopus): 57195555542. ORCID: 0000-0001-7829-2515.

Irina G. Frolova, MD, DSc, Professor, Head of the Radiation Diagnostics Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences (Tomsk, Russia). E-mail: frolovaig@oncology.tomsk.ru. Researcher ID (WOS): C-8212-2012. Author ID (Scopus): 7006413170. ORCID: 0000-0001-5227-006X.

СВЕДЕНИЯ ОБ АВТОРАХ

Чернов Владимир Иванович, доктор медицинских наук, профессор, заместитель директора по научной работе и инновационной деятельности, Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (г. Томск, Россия). E-mail: chernov@oncology.tomsk.ru, chernov@tnimc.ru, chernov1962@gmail.com. SPIN-код: 6301-3612. Researcher ID (WOS): P-1470-2014. Author ID (Scopus): 7201429550. ORCID: 0000-0001-8753-7916.

Дудникова Екатерина Александровна, младший научный сотрудник отделения химиотерапии, Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (г. Томск, Россия). E-mail: ekaterina.dudnikova@list.ru. SPIN-код: 8202-8396. Researcher ID (WOS): C-8937-2012. ORCID: 0000-0002-8218-8515.

Зельчан Роман Владимирович, врач-радиолог отделения радионуклидной диагностики, Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (г. Томск, Россия). E-mail: r.zelchan@yandex.ru. SPIN-код: 2255-5282. Researcher ID (WOS): C-8597-2012. Author ID (Scopus): 56901332100. ORCID: 0000-0002-4568-1781.

Кравчук Татьяна Леонидовна, кандидат медицинских наук, врач-гематолог отделения химиотерапии, Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (г. Томск, Россия). E-mail: tatkrav@bk.ru. Researcher ID (WOS): J-2342-2017. ORCID: 0000-0002-2048-3404.

Данилова Альбина Владимировна, врач-гематолог отделения химиотерапии, Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (г. Томск. Россия).

Медведева Анна Александровна, старший научный сотрудник отделения радионуклидной диагностики, Научноисследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (г. Томск, Россия). E-mail: medvedeva@tnimc.ru. SPIN-код: 9110-1730. Researcher ID (WOS): D-7455-2012. Author ID (Scopus): 57188995343. ORCID: 0000-0002-5840-3625.

Синилкин Иван Геннадьевич, старший научный сотрудник отделения радионуклидной диагностики, Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (г. Томск, Россия). E-mail: sinilkin@tnimc.ru. SPIN-код: 7254-3474. Researcher ID (WOS): C-9282-2012. Author ID (Scopus): 6506263379. ORCID: 0000-0001-6351-6408.

Брагина Ольга Дмитриевна, кандидат медицинских наук, младший научный сотрудник отделения радионуклидной диагностики, Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (г. Томск, Россия). E-mail: rungis@mail.ru. SPIN-код: 7961-5918. Researcher ID (WOS): E-9732-2017. Author ID (Scopus): 57190936256. ORCID: 0000-0001-5281-7758.

Гольдберг Виктор Евгеньевич, доктор медицинских наук, профессор, заместитель директора по научной и лечебной работе, заведующий отделением химиотерапии, Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (г. Томск, Россия). E-mail: goldbergve@mail.ru. SPIN-код: 7587-0560. Researcher ID (WOS): C-8911-2012. Author ID (Scopus): 54420064600. ORCID: 0000-0003-4753-5283.

Гольдберг Алексей Викторович, младший научный сотрудник отделения лучевой диагностики, Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (г. Томск, Россия). E-mail: agoldyyy@gmail.com. SPIN-код: 4415-0138. Researcher ID (WOS): J-6951-2017. Author ID (Scopus): 57195555542. ORCID: 0000-0001-7829-2515.

Фролова Ирина Георгиевна, доктор медицинских наук, профессор, заведующая отделением лучевой диагностики, Научноисследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (г. Томск, Россия). E-mail: frolovaig@oncology.tomsk.ru. SPIN-код: 9800-9777. Researcher ID (WOS): C-8212-2012. Author ID (Scopus): 7006413170. ORCID: 0000-0001-5227-006X.

Финансирование

Авторы данной статьи подтвердили отсутствие финансовой поддержки.

Конфликт интересов

Авторы объявляют, что у них нет конфликта интересов

Поступила 22.06.18 Принята в печать 26.07.18