Preview

Siberian journal of oncology

Advanced search

EFFECT OF THE MYCELIUM EXTRACT FROM DUDDINGTONIA FLAGRANS FUNGUS ON SUBCUTANEOUS XENOGRAFT OF HUMAN C33a CERVICAL CARCINOMA CELLS

https://doi.org/10.21294/1814-4861-2020-19-6-93-98

Abstract

The purpose of the study was to analyze the antitumor effects of the extract of mycelium from Duddingtonia flagrans (strain F-882) on xenografts of human C33a cervical cancer cells.

Material and Methods. To evaluate the antitumor effect, we used the absolute values of xenograft volumes and calculated the tumor growth inhibition and the index of tumor growth.

Results. At the first stage of the experiment, a 4-week subcutaneous injection of the water extract of F-882 resulted in an almost twofold slowdown in xenograft growth, with the tumor growth inhibition value of 50.6 %. In the second stage of the experiment, a 2.5-week subcutaneous injection followed by a 1.5-week intratumoral injection of F-882 also caused the tumor growth inhibition. After completing F-882 injections, the effect of tumor growth inhibition continued for 2.5 weeks and the tumor growth inhibition value was 58.7 %.

Conclusion. The mycelium extract F-882 was shown to have an antitumor effect on subcutaneous xenografts of human C33a cervical carcinoma cells.

About the Authors

O. I. Solovieva
Federal Research Center of Cytology and Genetics SB RAS
Russian Federation

Laboratory Assistant at the SPF-Vivarium

10, ak. lavrentiev ave., 630090, Novosibirsk, Russia




E. L. Zavjalov
Federal Research Center of Cytology and Genetics SB RAS
Russian Federation

PhD, Head of the SPF-Vivarium

Researcher ID (WOS): X-2415-2019. Author ID (Scopus): 26321256500

10, ak. lavrentiev ave., 630090, Novosibirsk, Russia




T. V. Teplyakova
State Research Center of Virology and Biotechnology «Vector»
Russian Federation

DSc, Professor, Head of the Mycology Laboratory 

630559, Koltsovo, Russia





L. R. Lebedev
State Research Center of Virology and Biotechnology «Vector»
Russian Federation

MD, DSc, Head of the Laboratory of Nucleic Acids and Recombinant Proteins of the State Research Center  

630559, Koltsovo, Russia




i A. Razumov
Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences; State Research center of Virology and Biotechnology «Vector»
Russian Federation

DSc, Senior Researcher at the Laboratory of Laboratory Animal Genetics

Researcher ID (WOS): X-1783-2019. Author ID (Scopus): 7003465369

10, ak. lavrentiev ave., 630090, Novosibirsk, Russia

630559, Koltsovo, Russia



References

1. Bayramova G.R., Fayzullin L.Z., Korolkova A.I., Poloznikov A.A., Kiselev V.I. Cervical cancer screening: what’s new in world practice. Obstetrics and Gynecology. 2016; 7: 17–21. (in Russian).

2. World Health Organization. Global Health Observatory [Internet]. URL: https://www.who.int/health-topics/cancer#tab=tab_1. (cited 2020 May 03).

3. Vetchinkina E.P., Shirokov A.A., Bucharskaya A.B., Navolokin N.A., Prilepsky A.Yu., Burov A.M., Maslyakova G.N., Nikitina V.E. Identification of antitumor activity of the deep mycelium and fruiting bodies of basidiomycetes. Successes of Medical Mycology. 2015; 14: 462–471. (in Russian).

4. Liskova A., Kubatka P., Samec M., Zubor P., Mlyncek M., Bielik T., Samuel S.M., Zulli A., Kwon T.K., Büsselberg D. Dietary Phytochemicals Targeting Cancer Stem Cells Molec. 2019; 24(5): 899. doi: 10.3390/molecules24050899.

5. Meng X., Liang H., Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydrate Res. 2016; 424: 30–41. doi: 10.1016/j.carres.2016.02.008.

6. Chan J.S., Barseghyan G.S., Asatiani M.D., Wasser S.P. Chemical Composition and Medicinal Value of Fruiting Bodies and Submerged Cultured Mycelia of Caterpillar Medicinal Fungus Cordyceps militaris CBS-132098 (Ascomycetes). Int J Med Mushrooms. 2015; 17(7): 649–59. doi: 10.1615/intjmedmushrooms.v17.i7.50.

7. Sangdee K., Buranrat B., Jaihan P., Thongchai S., Sangdee A. Evaluation of Antibacterial and Anticancer Activities of the Medicinal Fungus Ophiocordyceps sobolifera (Ascomycetes) from Thailand. Int J Med Mushrooms. 2018; 20(5): 471–484. doi: 10.1615/IntJMedMushrooms.2018026247.

8. Wijesekara I., Zhang C., Van Ta Q., Vo T.S., Li Y.X., Kim S.K. Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiol Res. 2014 Apr; 169(4): 255–61. doi: 10.1016/j.micres.2013.09.001.

9. Teplyakova T.V., Kosogova T.A., Bardasheva A.V. Correlation of antiviral and antitumor activities of aqueous extracts of basidiomycetes. Successes of Medical Mycology. 2014; 12: 348–52. (in Russian).

10. Buzatti A., de Paula Santos C., Fernandes M.A., Yoshitani U.Y., Sprenger L.K., dos Santos C.D., Molento M.B. Duddingtonia flagrans in the control of gastrointestinal nematodes of horses. Exp Parasitol. 2015 Dec; 159: 1–4. doi: 10.1016/j.exppara.2015.07.006.

11. Tepljakova T.V., Repin V.E., Rjabchikova E.I., Sviridenko A.N. Fungi strain Duddingtonia flagrans with activity against plant gall nematode and animal parasitic nematode, and stimulating of plant growth and development. Patent № 2003114166/13. Registration: 13.05.2003. Publication: 10.06.2005. (in Russian).

12. Ibragimova Zh.B., Ananko G.G., Kostina N.E., Teplyakova T.V., Mazurkova N.А. Toxicity and antiviral activity of deep mycelium extracts of the nematophage fungus Duddingtonia flagrans in Vero cell culture. Bulletin of Experimental Biology and Medicine. 2015; 8: 212–14. (in Russian).

13. Teplyakova T.V., Kosogova T.A., Mazurkova N.A., Ibragimova Zh.B., Gashnikova N.M., Ananko G.G., Bulychev L.E., Stavsky E.A. Antiviral agent based on a strain of the nematophage fungus Duddingtonia flagrans F-882. Patent № 216.012.271B. Registration: 20.02.2013. Publication: 20.02.2013. (in Russian).

14. Tomayko M.M., Reynolds C.P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989; 24(3): 148–54. doi: 10.1007/BF00300234.

15. Khabriev R.U. Guidelines for experimental (preclinical) study of new pharmacological substances. Moscow, 2005. 832 p. (in Russian).

16. Shamtsyan M.M., Galynkin V.A., Garabadzhiu A.V., Petrishchev N.N. The study of immunomodulating and antitumor activity of higher fungi. Russian Biotherapeutic Journal. 2012; 11 (2): 62. (in Russian).

17. Polkovnikova M.V., Nosik N.N., Garaev T.M., Kondrashina N.G., Finogenova M.P., Shibnev V.A. The study of the antiherpetic properties of extracts from the birch fungus Inonotus obliquus (Antiviral and antitumor activity of chaga extract). Problems of Virology. 2014; 59(2): 45–48. (in Russian).

18. Wasser S.P. Medicinal Mushrooms in Human Clinical Studies. Part I. Anticancer, Oncoimmunological, and Immunomodulatory Activities: A Review. Int J Med Mushrooms. 2017; 19(4): 279–317. doi: 10.1615/IntJMedMushrooms.v19.i4.10.

19. Zibirov R.F., Mozerov S.A. Characterization of the tumor cell microenvironment. P.A. Herzen. Journal of Oncology. 2018; 7 (2): 67–72. (in Russian). doi: 10.17116/onkolog20187267-72.

20. The microenvironment of the tumor and its components are new therapeutic targets in oncology. Molecular Medicine. 2016; 14(5): 48. (in Russian).


Review

For citations:


Solovieva O.I., Zavjalov E.L., Teplyakova T.V., Lebedev L.R., Razumov i.A. EFFECT OF THE MYCELIUM EXTRACT FROM DUDDINGTONIA FLAGRANS FUNGUS ON SUBCUTANEOUS XENOGRAFT OF HUMAN C33a CERVICAL CARCINOMA CELLS. Siberian journal of oncology. 2020;19(6):93-98. (In Russ.) https://doi.org/10.21294/1814-4861-2020-19-6-93-98

Views: 1007


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)