Preview

Сибирский онкологический журнал

Расширенный поиск

Возможности жидкостной биопсии в диагностике и мониторинге цервикального рака

https://doi.org/10.21294/1814-4861-2019-18-2-92-101

Полный текст:

Аннотация

Введение. Рак шейки матки (РШМ) является одним из самых распространенных онкологических заболеваний среди женщин репродуктивного и трудоспособного возраста. Цитологический скрининг не всегда эффективен по ряду причин, поэтому актуальным является поиск новых предиктивных маркеров малигнизации цервикального эпителия. В качестве новой опции с позиции персонализированного под-хода в диагностике и мониторинге РШМ в настоявшее время рассматривается жидкостная биопсия. Это совокупность методик по определению дериватов опухоли в биологических средах, чаще всего в крови: циркулирующие опухолевые клетки, циркулирующие ДНК, РНК, экзосомы и др.

Цель исследования – анализ данных о возможности использования жидкостной биопсии в диагностике и мониторинге цервикального рака.

Материал и методы. Источники литературы по теме исследования, найденные в системах pubmed и Elibrary за последние 10 лет.

Результаты. Наиболее изученными неинвазивными биомаркерами РШМ являются циркулирующие опухолевые клетки, циркулирующая опухолевая ДНК, РНК и экзосомы, которые играют ключевую роль в цервикальном канцерогенезе, отражают химио- и радиочувствительность опухолевых клеток, наряду с уже известными клинико-морфологическими прогностическими критериями определяют прогноз РШМ. В настоящее время жидкостная биопсия рассматривается как перспективный современный метод диагностики и мониторинга течения РШМ. Диагностическая ценность этого метода исследования заключается в возможности прогнозирования течения РШМ и определения чувствительности к специализированным видам лечения. Учитывая её большой диагностический потенциал, не исключается возможность использования жидкостной биопсии в качестве скринирующей методики РШМ. Однако подобного рода утверждения требуют пр-должения исследований в этом направлении. Кроме того, учитывая появляющиеся новые сведения о молекулярном канцерогенезе РШМ, жидкостная биопсия может быть использована и как основа для разработки таргетной терапии местнораспространенного и генерализованного цервикального рака.

Выводы. Имеющиеся данные указывают на потенциальную возможность использования жидкостной биопсии как метода неинвазивного мониторинга течения РШМ.

Об авторе

Е. В. Каюкова
ФГБОУ ВО «Читинская государственная медицинская академия» Министерства здравоохранения Российской Федерации.
Россия

Каюкова Елена Владимировна, кандидат медицинских наук, заведующая кафедрой онкологии. SPIN-код: 1066-9708. Researcher ID (WOS): Q-6603-2017. Author ID (Scopus): 26665522800.

г. Чита, 672000, ул. Горького, 39А.



Список литературы

1. Shah S.S., Senapati S., Klacsmann F., Miller D.L., Johnson J.J., Chang H.C., Stack M.S. Current Technologies and Recent Developments for Screening of HPV-Associated Cervical and Oropharyngeal Cancers. Cancers (Basel). 2016 Sep 9; 8 (9). pii: E85. doi: 10.3390/cancers8090085.

2. Каприн А.Д., Старинский В.В., Петрова Г.В. Состояние онкологической помощи населению России в 2017 году. М., 2018. 236. [Kaprin A.D., Starinskii V.V., Petrova G.V.The state of oncological assistance to the population of Russia in 2017. Moscow, 2018. 236. (in Russian)].

3. Информационная записка ВОЗ: Комплексная профилактика рака шейки матки и борьба с ним – здоровое будущее для девочек и женщин. 2013. 16. [WHO guidance note: comprehensive cervical cancer prevention and control: a healthier future for girls and women. 2013. 16. (in Russian)].

4. Каюкова Е.В., Каюкова Т.В. Возможности онкомаркеров в выявлении рака шейки матки. Забайкальский медицинский журнал. 2015; 1: 38–44. [Kayukova E.V., Kayukova T.V. Possibilities of tumor markers in detecting cervical cancer. Zabaikal’skii meditsinskii zhurnal. 2015; 1: 38–44. (in Russian)].

5. Jia S., Zhang R., Li Z., Li J. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget. 2017 Apr 18; 8 (33): 55632–55645. doi: 10.18632/oncotarget.17184.

6. Quandt D., Zucht H.D., Amann A., Wulf-Goldenberg A., Borrebaeck C., Cannarile M., Lambrechts D., Oberacher H., Garrett J., Nayak T., Kazinski M., Massie C., Schwarzenbach H., Maio M., Prins R., Wendik B., Hockett R., Enderle D., Noerholm M., Hendriks H., Zwierzina H., Seliger B. Implementing liquid biopsies into clinical decision making for cancer immunotherapy. Oncotarget. 2017 Jul 18; 8 (29): 48507–48520. doi: 10.18632/oncotarget.17397.

7. Каюкова Е.В., Каюкова Т.В. Современные представления о канцерогенезе. Забайкальский медицинский журнал. 2017; 4: 39–43. [Kayukova E.V., Kayukova T.V. Modern ideas about carcinogenesis. Zabaikal’skii meditsinskii zhurnal. 2017; 4: 39–43. (in Russian)].

8. Arneth B. Update on the types and usage of liquid biopsies in the clinical setting: a systematic review. BMC Cancer. 2018 May 4; 18 (1): 527. doi: 10.1186/s12885-018-4433-3.

9. Tai Y.L., Chen K.C., Hsieh J.T., Shen T.L. Exosomes in cancer development and clinical applications.Cancer Sci. 2018 Aug; 109 (8): 2364–2374. doi: 10.1111/cas.13697.

10. Neumann M.H.D., Bender S., Krahn Th., Schlange T.ctDNA and CTCs in Liquid Biopsy – Current Status and Where We Need to Progress. Comput Struct Biotechnol J. 2018 Jun 1; 16: 190–195. doi: 10.1016/j.csbj.2018.05.002.

11. PfitznerC., SchröderI., ScheungraberC., Dogan A., Runnebaum I.B., Dürst M., Häfner N. Digital-Direct-RT-PCR: a sensitive and specific method for quantification of CTC in patients with cervical carcinoma. Sci Rep. 2014; 4 (3970): 1–7. doi: 10.1038/srep03970.

12. Аликс-Панабьерес Е., Пантел К. Циркулирующие опухолевые клетки: жидкостная биопсия рака. Клиническая лабораторная диагностика. 2014; 4. 60–64. [Alix-Panabieres C., Pantel K.The circulating tumor cells: liquid biopsy of cancer. Clinical and Laboratory Diagnostics. 2014; 4. 60–64. (in Russian)].

13. Takakura M., Matsumoto T., Nakamura M., Mizumoto Y., Myojyo S., Yamazaki R., Iwadare J., Bono Y., Orisaka S., Obata T., Iizuka T., Kagami K., Nakayama K., Hayakawa H., Sakurai F., Mizuguchi H., Urata Y., Fujiwara T., Kyo S., Sasagawa T., Fujiwara H.Detection of circulating tumor cells in cervical cancer using a conditionally replicative adenovirus targeting telomerase-positive cells. Cancer Sci. 2018 Jan; 109 (1): 231–240. doi: 10.1111/cas.13449.

14. Исмаилова Г., Laget S., Paterlini-Bréchot P. Диагностика циркулирующих опухолевых клеток с помощью технологии ISET и их молекулярная характеристика для жидкостной биопсии. Клиническая медицина Казахстана. 2015; 1 (350): 15–20. [Ismailova G., Laget S., Paterlini-Bréchot P.Detection of Circulating Tumor cells by ISET and their molecular characterization for use as liquid biopsy. Journal of Clinical Medicine of Kazakhstan. 2015; 1 (350): 15–20. (in Russian)].

15. Fabbri F., Carloni S., Zoli W., Ulivi P., Gallerani G., Fici P., Chiadini E., Passardi A., Amadori D.Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett. 2013 Jul 10; 335 (1): 225–31. doi: 10.1016/j.canlet.2013.02.015.

16. Jung A., Kirchner T. Liquid biopsy in tumor genetic diagnosis. Dtsch Arztebl Int. 2018 Mar 9; 115 (10): 169–174. doi: 10.3238/arztebl.2018.0169.

17. Peeters D.J., Brouwer A., Van den Eynden G.G., Rutten A., Onstenk W., Sieuwerts A.M., Van Laere S.J., Huget P., Pauwels P., Peeters M., Vermeulen P.B., Dirix L.Y.Circulating tumour cells and lung microvascular tumour cell retention in patients with metastatic breast and cervical cancer. Cancer Lett. 2015 Jan 28; 356 (2 Pt B): 872–9. doi: 10.1016/j.canlet.2014.10.039.

18. Scheungraber C., Müller B., Köhler C., Possover M., Leistritz S., Schneider A., Dürst M. Detection of disseminated tumor cells in patients with cervical cancer. J Cancer Res Clin Oncol. 2002 Jun; 128 (6): 329–35. doi: 10.1007/s00432-002-0340-7.

19. Fehm T., Banys M., Rack B., Jäger B., Hartkopf A., Taran F.A., Janni W. Presence of disseminated tumor cells in bone marrow correlates with tumor stage and nodal involvement in cervical cancer patients. Int J Cancer. 2014 Feb 15; 134 (4): 925–31. doi: 10.1002/ijc.28417.

20. Meng S., Tripathy D., Frenkel E.P., Shete S., Naftalis E.Z., Huth J.F., Beitsch P.D., Leitch M., Hoover S., Euhus D., Haley B., Morrison L., Fleming T.P., Herlyn D., Terstappen L.W., Fehm T., Tucker T.F., Lane N., Wang J., Uhr J.W.Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004; 10 (24): 8152–8162. doi: 10.1158/1078-0432.CCR-04-1110.

21. ChengF., SuL.,QianC.Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget. 2016 Jul 26; 7 (30): 48832–48841. doi: 10.18632/oncotarget.9453.

22. Campitelli M., Jeannot E., Peter M., Lappartient E., Saada S., de la Rochefordière A., Fourchotte V., Alran S., Petrow P., Cottu P., Pierga J.Y., Lantz O., Couturier J., Sastre-Garau X.Human papillomavirus mutational insertion: specific marker of circulating tumor DNA in cervical cancer patients. PLoS One.2012; 7 (8): e43393. doi: 10.1371/journal.pone.0043393.

23. Guerrero-Preston R., Valle B.L., Jedlicka A., Turaga N., Folawiyo O., Pirini F., Lawson F., Vergura A., Noordhuis M., Dziedzic A., Pérez G., Renehan M., Guerrero-Diaz C., De Jesus Rodríguez E., Diaz-Montes T., Rodríguez Orengo J., Méndez K., Romaguera J., Trock B.J., Florea L., Sidransky D. Molecular triage of premalignant lesions in liquid-based cervical cytology and circulating cell-free DNA from urine, using a panel of methylated Human Papilloma Virus and host genes. Cancer Prev Res (Phila). 2016 Dec; 9 (12): 915–924. doi: 10.1158/1940-6207.CAPR-16-0138.

24. MendezK., RomagueraJ.,OrtizA.,LópezM.,SteinauM., UngerE. Urine-based human papillomavirus DNA testing as a screening tool for cervical cancer in high-risk women. Int J Gynaecol Obstet. 2014 Feb; 124 (2): 151–155. doi: 10.1016/j.ijgo.2013.07.036.

25. Ducancelle A., Legrand M.C., Pivert A., Veillon P., Le GuillouGuillemette H., De Brux M.A., Beby-Defaux A., Agius G., Hantz S., Alain S., Catala L., Descamps P., Postec E., Caly H., Charles-Pétillon F., Labrousse F., Lunel F., Payan C.Interest of Human Papillomavirus DNA quantification and genotyping in paired cervical and urine samples to detect cervical lesions. Arch Gynecol Obstet.2014; 290 (2): 299–308. doi: 10.1007/s00404-014-3191-y.

26. Maged A.M., Saad H., Salah E., Meshaal H., AbdElbar M., Omran E., Eldaly A. Urine test for HPV genotypes as a predictor of precancerous cervical lesions and for cervical cancer screening. Int J Gynaecol Obstet. 2018 Jun; 141 (3): 332–336. doi: 10.1002/ijgo.12453.

27. Chung T.K.H., Cheung T.H., Yim S.F., Yu M.Y., Chiu R.W.K., Lo K.W.K., Lee I.P.C., Wong R.R.Y., Lau K.K.M., Wang V.W., Worley M.J.Jr., Elias K.M., Fiascone S.J., Smith D.I., Berkowitz R.S., Wong Y.F.Liquid biopsy of PIK3CA mutations in cervical cancer in Hong Kong Chinese women. Gynecol Oncol. 2017 Aug; 146 (2): 334–339. doi: 10.1016/j.ygyno.2017.05.038.

28. Брызгунова О.Е., Лактионов П.П. Внеклеточные нуклеиновые кислоты мочи: источники, состав, использование в диагностике. Acta Naturae. 2015; 3 (26): 54–60. [Bryzgunova O.E., Laktionov P.P.Extracellular Nucleic Acids in Urine: Sources, Structure, Diagnostic Potential. Acta Naturae. 2015; 7 (3): 48–54. (in Russian)].

29. Zhu H., Chen X., Yan Hu., Shi Z., Zhou Q., Zheng J., Wang Y.Long non-coding RNA expression profile in cervical cancer tissues. Oncol Lett. 2017 Aug; 14 (2): 1379–1386. doi: 10.3892/ol.2017.6319.

30. Сахаутдинова И.В., Капора Е.С. Генетические предикторы экспрессии длинных некодирующих РНК как фактор прогнозирования развития и течения рака шейки матки. Медицинский вестник Башкортостана. 2017; 6 (72): 130–133. [Sakhautdinova I.V., Kapora E.S. Genetic predictors of expression of long non-coding RNAS, as prognostic factor for course and development of cervical cancer. Bashkortostan Medical Journal. 2017; 6 (72): 130–133. (in Russian)].

31. Guo H.M., Yang S.H., Zhao S.Z., Li L., Yan M.T., Fan M.C.LncRNA NEAT1 regulates cervical carcinoma proliferation and invasion by targeting AKT/PI3K. Eur Rev Med Pharmacol Sci. 2018 Jul; 22 (13): 4090–4097. doi: 10.26355/eurrev_201807_15400.

32. Zou R., Chen X., Jin X., Li S., Ou R., Xue J., Yan X., Chen L., Hu Y., Zhu H. Up-regulated BCAR4 contributes to proliferation and migration of cervical cancer cells. Surg Oncol. 2018; 27 (2): 306–313. doi: 10.1016/j.suronc.2018.05.013.

33. Zhang H.H., Li A.H. Long non-coding RNA FEZF1-AS1 is up-regulated and associated with poor prognosis in patients with cervical cancer. Eur Rev Med Pharmacol Sci. 2018; 22 (11): 3357–62. doi: 10.26355/eurrev_201806_15156.

34. Wang C.H., Li Y.H., Tian H.L., Bao X.X., Wang Z.M.Long noncoding RNA BLACAT1 promotes cell proliferation, migration and invasion in cervical cancer through activation of Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2018; 22 (10): 3002–09. doi: 10.26355/eurrev_201805_15057.

35. Vrba L., Futscher B.W. Epigenetic silencing of lncRNA MORT in 16 TCGA cancer types. F1000Res. 2018; 7: 211. doi: 10.12688/ f1000research.13944.1.

36. Ma T.T., Zhou L.Q., Xia J.H., Shen Y., Yan Y., Zhu R.H. LncRNA PCAT-1 regulates the proliferation, metastasis and invasion of cervical cancer cells. Eur Rev Med Pharmacol Sci. 2018 Apr; 22 (7): 1907–1913. doi: 10.26355/eurrev_201804_14713.

37. Zhao Y., Huang J., Liu T., He S., Shang C., Guo L., Du Q., Yao S. Overexpression of long non-coding RNA RP11-396F22.1 correlates poor prognosis of patients with early-stage cervical cancer. Am J Transl Res. 2018 Mar 15; 10 (3): 684–695.

38. Zhang Y., Cheng X.,, Liang H., Jin Z. Long non-coding RNA HOTAIR and STAT3 synergistically regulate the cervical cancer cell migration and invasion. Chem Biol Interact. 2018; 286: 106–110. doi: 10.1016/j.cbi.2018.03.010.

39. Wen Q., Liu Y., Lyu H., Xu X., Wu Q., Liu N., Yin Q., Li J., Sheng X. Long Noncoding RNA GAS5, Which Acts as a Tumor Suppressor via microRNA 21, Regulates Cisplatin Resistance Expression in Cervical Cancer. Int J Gynecol Cancer.2017 Jul; 27 (6): 1096–1108. doi: 10.1097/IGC.0000000000001028.

40. Zhang J., Gao Y.CCAT-1 promotes proliferation and inhibits apoptosis of cervical cancer cells via the Wnt signaling pathway. Oncotarget. 2017 Jul 10; 8(40): 6805968070. doi: 10.18632/oncotarget.19155.

41. Chen Х., Liu L., Zhu W., Chen X. Up-regulation of long noncoding RNA CCAT2 correlates with tumor metastasis and poor prognosis in cervical squamous cell. Biochem Biophys Res Commun.2016 Nov; 480 (4): 508–514.

42. Fan L., Huang C., Li J., Gao T., Lin Z., Yao T. Long noncoding RNA urothelial cancer associated 1 regulates radioresistance via the hexokinase 2/glycolytic pathway in cervical cancer. Int J Mol Med. 2018 Oct; 42 (4): 2247–2259. doi: 10.3892/ijmm.2018.3778.

43. Zhang H., Liu C., Yan T., Wang J., Liang W.Long noncoding RNA BDNF-AS is downregulated in cervical cancer and has anti-cancer functions by negatively associating with BDNF. Arch Biochem Biophys. 2018 May 15; 646: 113–119. doi: 10.1016/j.abb.2018.03.023.

44. Guo F., Chen Y.Z., Li L., Chen C., Jin J.H., Yang J., Chen J.J., Chen X.Y., Guo M., Chen Y.M. Long non-coding RNA XLOC_008466 acts as an oncogenic molecular in cervical cancer tumorigenesis. Biomed Pharmacother.2018 Feb; 98: 88–94. doi: 10.1016/j.biopha.2017.11.143.

45. Zhao L.P., Li R.H., Han D.M., Zhang X.Q., Nian G.X., Wu M.X., Feng Y., Zhang L., Sun Z.G.Independent prognostic Factor of low-expressed LncRNA ZNF667-AS1 for cervical cancer and inhibitory function on the proliferation of cervical cancer. Eur Rev Med Pharmacol Sci.2017 Dec; 21 (23): 5353–5360. doi: 10.26355/eurrev_201712_13920.

46. Kobayashi R., Miyagawa R., Yamashita H., Morikawa T., Okuma K., Fukayama M., Ohtomo K., Nakagawa K.Increased expression of long noncoding RNA XIST predicts favorable prognosis of cervical squamous cell carcinoma subsequent to definitive chemoradiation therapy. Oncol Lett. 2016 Nov; 12 (5): 3066–3074. doi: 10.3892/ol.2016.5054.

47. Peng J., Hou F., Feng J., Xu S.X., Meng X.Y. Long non-coding RNA BCYRN1 promotes the proliferation and metastasis of cervical cancer via targeting microRNA-138 in vitro and in vivo. Oncol Lett.2018 Apr; 15 (4): 5809–5818. doi: 10.3892/ol.2018.8015.

48. Zhang S., Zhang G., Liu J. Long noncoding RNA PVT1 promotes cervical cancer progression through epigenetically silencing miR-200b. APMIS. 2016 Aug; 124 (8): 649–58. doi: 10.1111/apm.12555.

49. Eoh K.J., Paek J., Kim S.W., Kim H.J., Lee H.Y., Lee S.K., Kim Y.T. Long non-coding RNA, steroid receptor RNA activator (SRA), induces tumor proliferation and invasion through the NOTCH pathway in cervical cancer cell lines. Oncol Rep.2017 Dec; 38 (6): 3481–3488. doi: 10.3892/or.2017.6023.

50. Liu S., Song L., Yao H., Zhang L., Xu D., Gao F., Li Q.MiR-375 Is Epigenetically Downregulated by HPV-16 E6 Mediated DNMT1 Upregulation and Modulates EMT of Cervical Cancer Cells by Suppressing lncRNA MALAT1. PLoS One. 2016; 11 (9): e0163460. doi: 10.1371/journal.pone.0163460.

51. ZhuH., ChenX., HuY., ShiZ., ZhouQ., ZhengJ., WangY.Long non-coding RNA expression profile in cervical cancer tissues. Oncol Lett. 2017 Aug; 14 (2): 1379–1386. doi: 10.3892/ol.2017.6319.

52. LópezA., LópezJ.Multistep Model of Cervical Cancer: Participation of miRNAs and Coding Genes. Int J Mol Sci. 2014 Sep; 15 (9): 15700–15733. doi: 10.3390/ijms150915700.

53. Архангельская П.А., Бахидзе Е.В., Берлев И.В., Самсонов Р.Б., Иванов М.К., Малек А.В. МикроРНК, ВПЧ-инфекция и цервикальный канцерогенез: молекулярные аспекты и перспективы клинического использования. Сибирский онкологический журнал. 2016; 15 (4): 88–97. [Arkhangelskaya P.A., Bakhidze E.V., Berlev I.V., Samsonov R.B., Ivanov M.K., Malek A.V.MicroRNA, HPV and cervical carcinogenesis: molecular aspects and prospects of clinical application. Siberian Journal of Oncology. 2016; 15 (4): 88–97. (in Russian)]. doi: 10.21294/1814-4861-2016-15-4-88-97.

54. Dai S., Lu Y., Long Y., Lai Y., Du P., Ding N., Yao D. Prognostic value of microRNAs in cervical carcinoma: a systematic review and meta-analysis. Oncotarget. 2016; 7 (23): 35369–78. doi: 10.18632/oncotarget.9294.

55. Gilabert-Estelles J., Braza-Boils A., Ramon L.A., Zorio E., Medina P., Espana F., Estelles A. Role of microRNAs in gynecological pathology. Curr Med Chem. 2012; 19 (15): 2406–2413. doi: 10.2174/092986712800269362.

56. Díaz-González S., Deas J., Benítez-Boijseauneau O., GómezCerón C., Bermúdez-Morales V., Rodríguez-Dorantes M., PérezPlasencia C., Peralta-Zaragoza O. Utility of MicroRNAs and siRNAs in Cervical Carcinogenesis. Biomed Res Int. 2015; 2015: 374924. doi: 10.1155/2015/374924.

57. Servín-González L.S., Granados-López A.J., López J.A. Families of microRNAs Expressed in Clusters Regulate Cell Signaling in Cervical Cancer. Int J Mol Sci.2015 Jun 5; 16 (6): 12773–90. doi: 10.3390/ijms160612773.

58. Honegger A., Schilling D., Bastian S., Sponagel J., Kuryshev V., Sültmann H., Scheffner M., Hoppe-Seyler K., Hoppe-Seyler F. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog.2015 Mar 11; 11 (3): e1004712. doi: 10.1371/journal.ppat.1004712.

59. Tseng C.J., Pao C.C., Lin J.D., Soong Y.K., Hong J.H., Hsueh S. Detection of human papillomavirus types 16 and 18 mRNA in peripheral blood of advanced cervical cancer patients and its association with prognosis. J Clin Oncol. 1999; 17 (5): 1391–1396. doi: 10.1200/JCO.1999.17.5.1391.

60. Gilabert-Estelles J., Braza-Boils A., Ramon L.A., Zorio E., Medina P., Espana F., EstellesA. Role of microRNAs in gynecological pathology. Curr Med Chem. 2012; 19 (15): 2406–2413. doi: 10.2174/092986712800269362.

61. He Y., Lin J., Ding Y., Liu G., Luo Y., Huang M., Xu C., Kim T., Etheridge A., Lin M., Kong D., Wang K.A systematic study on dysregulated microRNAs in cervical cancer development. Int J Cancer. 2016 Mar 15; 138 (6): 1312–27. doi: 10.1002/ijc.29618.

62. Yunusova N.V., Tamkovich S.N., Stakheeva M.N., Grigor’eva A.A., Somov A.K., Tugutova E.A., Kolomiets L.A., Molchanov S.V., Afanas’ev S.G., Kakurina G.V., Choinzonov E.L., Kondakova I.V.The characterization of exosomes from biological fluids of patients with different types of cancer. Physics of cancer: Interdisciplinary problems and clinical applications: Proceedings of the International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications (PC IPCA’17). Book series: AIP Conference Proceedings. Tomsk, 2017; 1882: 020080-1–020080-4. [Электронный ресурс].

63. Valenzuela M.M., Ferguson Bennit H.R., Gonda A., Diaz Osterman C.J., Hibma A., Khan S., Wall N.R.Exosomes Secreted from Human Cancer Cell Lines Contain Inhibitors of Apoptosis (IAP). Cancer Microenviron. 2015; 8: 65–73. doi: 10.1007/s12307-015-0167-9.

64. GuenatD., HermetetF. ,PrétetJ., MouginC.Exosomes and Other Extracellular Vesicles in HPV Transmission and Carcinogenesis Viruses. 2017 Aug; 9 (8): 211. doi: 10.3390/v9080211.

65. FangF., HuangB., SunS., XiaoM., GuoJ., YiX., CaiJ., WangZ. MiR-27a inhibits cervical adenocarcinoma progression by downregulating the TGF-βRI signaling pathway. Cell Death Dis. 2018 Mar; 9 (3): 395. doi: 10.1038/s41419-018-0431-2.

66. Liu J., Sun H., Wang X., Yu Q., Li S., Yu X., Gong W.Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci. 2014; 15: 758–773. doi: 10.3390/ijms15010758.

67. RenG., WangY., YuanS., WangB. Dendritic cells loaded with HeLa-derived exosomes simulate an antitumor immune response. Oncol Lett. 2018 May; 15 (5): 6636–6640. doi: 10.3892/ol.2018.8126.

68. Балдуева И.А., Новик А.В., Моисеенко В.М., Нехаева Т.Л., Данилова А.Б., Данилов А.О., Проценко С.А., Петрова Т.Ю., Улейская Г.И., Щёкина Л.А., Семёнова А.И., Михайличенко Т.Д., Телетаева Г.М., Жабина А.С., Волков Н.В., Комаров Ю.И. Клиническое исследование (II фаза) вакцины на основе аутологичных дендритных клеток с иммунологическим адъювантом у больных с меланомой кожи. Вопросы онкологии. 2012; 58 (2): 212–221. [Baldueva I.A., Novik A.V., Moiseenko V.M., Nehaeva T.L., Danilova A.B., Danilov A.O., Protsenko S.A., Petrova T. Yu., Uleyskaya G.I., Schekina L.A., Semenova A.I., Mihaylichenko T.D., Teletaeva G.M., Zhabina A.S., Volkov N.V., Komarov Yu. I.The results of second-phase clinical trial of autologous dendritic cells vaccine with immunologic adjuvant in cutaneous melanoma patients. Problems in Oncology. 2012; 58 (2): 212–21. (in Russian)].


Для цитирования:


Каюкова Е.В. Возможности жидкостной биопсии в диагностике и мониторинге цервикального рака. Сибирский онкологический журнал. 2019;18(2):92-101. https://doi.org/10.21294/1814-4861-2019-18-2-92-101

For citation:


Kayukova E.V. Role of liquid biopsy in the detection and monitoring of cervical cancer. Siberian journal of oncology. 2019;18(2):92-101. (In Russ.) https://doi.org/10.21294/1814-4861-2019-18-2-92-101

Просмотров: 137


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)