THE ROLE OF DIFFUSE OPTICAL SPECTROSCOPY IN THE DIAGNOSIS OF BREAST CANCER (CASE REPORT)
https://doi.org/10.21294/1814-4861-2019-18-4-92-101
Abstract
About the Authors
M. V. PavlovRussian Federation
MD, Ultrasound doctor,
2, Lower Volga Embankment, 603001-Nizhny Novgorod
S. A. Pegov
Russian Federation
MD, oncologist-mammologist,
62, Pokrovskaya Street, 603000-Nizhny Novgorod
A. G. Orlova
Russian Federation
PhD, Senior Researcher,
46, Ul’yanov Street, 603950-Nizhny Novgorod
G. Yu. Golubyatnikov
Russian Federation
PhD, Senior Researcher,
46, Ul’yanov Street, 603950-Nizhny Novgorod
L. V. Shkalova
Russian Federation
PhD, Head of the Pathology Department,
2, Lower Volga Embankment, 603001-Nizhny Novgorod
P. A. Malinina
Russian Federation
Student,
10/1, Minina Square, 603950-Nizhny Novgorod
P. I. Rykhtik
Russian Federation
PhD, Head of Radiation Diagnosis Department,
2, Lower Volga Embankment, 603001-Nizhny Novgorod
I. V. Turchin
Russian Federation
PhD, Head of Laboratory,
46, Ul’yanov Street, 603950-Nizhny Novgorod
A. V. Maslennikova
Russian Federation
MD, DSc, Professor,
10/1, Minina Square, 603950-Nizhny Novgorod
References
1. Kaprin A.D., Starinsky V.V., Petrov G.V. Malignant neoplasms in Russia in 2015 (morbidity and mortality). Moscow, 2017. 10. (in Russian).
2. Carney P.A., Miglioretti D.L., Yankaskas B.C., Kerlikowske K., Rosenberg R., Rutter C.M., Geller B.M., Abraham L.A., Taplin S.H., Dignan M., Cutter G., Ballard-Barbash R. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann. Intern Med. 2003; 138: 168–175. doi: 10.7326/0003-4819-138-3-200302040-00008.
3. Komarova L.Ye. Screening mammography in the diagnosis of cancer in situ. Tumors of female reproductive system. 2008; 3: 20–23. (in Russian).
4. Kushlinskiy N.E., Portnoy S.M., Laktionov K.P. Breast cancer (clinical observations, endocrinological, biochemical and molecular-biological research methods). Bulletin of experimental biology and medicine. 2005; 139 (5): 556. (in Russian).
5. Popiel M., Mróz-Klimas D., Kasprzak R., Furmanek M. Mammary carcinoma current diagnostic methods and symptomatology in imaging studies. Pol J Radiol. 2012 Oct; 77(4): 35–44.
6. Serebryakova S.V., Trufanov G.E., Yukhno E.A. Magnetic resonance semiotics of breast cancer. Tumors of female reproductive system. 2009; 3–4: 20–25. (in Russian)..
7. Popiela T.J., Kibil W., Herman-Sucharska I., Urbanik A. The use of magnetic resonance mammography in women at increased risk for developing breast cancer. Wideochir Inne Tech Maloinwazyjne. 2013 Mar; 8(1): 55–62. doi: 10.5114/wiitm.2011.31534.
8. Tamkovich S.N., Voytsitskiy V.E., Laktionov P.P. Modern approach of breast cancer diagnostics. Biochemistry. 2014; 60(2): 141–160. (in Russian).
9. Warning K., Hildebrandt M.G., Kristensen B., Ewertz M. Utility of 18FDG-PET/CT in breast cancer diagnostics – a systematic review. Dan Med Bull. 2011; 58(7): A4289.
10. Cerussi A., Shah N., Hsiang D., Durkin A., Butler J., Tromberg B.J. In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomedic Optics. 2006; 11(4): 044005. doi: 10.1117/1.2337546.
11. Zhu Q., Huang M., Chen N., Zarfos K., Jagjivan B., Kane M., Hedge P., Kurtzman S.H. Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases. Neoplasia. 2003 Sep-Oct; 5(5): 379–88. doi: 10.1016/s1476-5586-(03)80040-4.
12. Maslennikova A.V., Golubyatnikov G.Yu., Orlova A.G., Plekhanov V.I., Artifeksova A.A., Shakhova N.M., Kamensky V.A., Turchin I.V. Non-invasive optical method for evaluating the oxygen status in breast neoplasms. Tumors of female reproductive system. 2010; 1: 5–10. (in Russian).
13. Turchin I.V. Methods of biomedical optical imaging: From subcellular structures to tissues and organs. PhysicsUspekhi. 2016; 186(5): 550–567. (in Russian).
14. McBride T.O., Pogue B.W., Poplack S., Soho S., Wells W.A., Jiang S., Osterberg U.L., Paulsen K.D. Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast. J Biomed Opt. 2002; 7(1): 72–9. doi:10.1117/1.1428290.
15. Tromberg B.J., Zhang Z., Leproux A., O’Sullivan T.D., Cerussi A.E., Carpenter P.M., Mehta R.S., Roblyer D., Yang W., Paulsen K.D., Pogue B.W., Jiang S., Kaufman P.A., Yodh A.G., Chung S.H., Schnall M., Snyder B.S., Hylton N., Boas D.A., Carp S.A., Isakoff S.J., Mankoff D. Predicting Responses to Neoadjuvant Chemotherapy in Breast Cancer: ACRIN 6691 Trial of Diffuse Optical Spectroscopic Imaging (DOSI). Cancer research. 2016; 76(20): 5933–5944. doi:10.1158/0008-5472.CAN-16-0346.
16. Cerussi A.E., Tanamai V.W., Hsiang D., Butler J., Mehta R.S., Tromberg B.J. Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy. Philos Trans A Math Phys Eng Sci. 2011 Nov 28; 369(1955): 4512–30. doi: 10.1098/rsta.2011.0279.
17. Jiang S., Pogue B.W., Kaufman P.A., Gui J., Jermyn M., Frazee T.E., Poplack S.P., DiFlorio-Alexander R., Wells W.A., Paulsen K.D. Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment. Clin Cancer Res. 2014 Dec 1; 20(23): 6006–15. doi: 10.1158/1078-0432.CCR-14-1415.
18. Anderson P.G., Kalli S., Sassaroli A., Krishnamurthy N., Makim S.S., Graham R.A., Fantini S. Optical mammography in patients with breast cancer undergoing neoadjuvant chemotherapy: individual clinical response index.Acad Radiol. 2017 Oct; 24(10): 1240–1255. doi: 10.1016/j.acra.2017.03.020.
19. Pavlov M.V., Kalganova T.I., Lyubimtseva Y.S., Plekhanov V.I., Golubyatnikov G.Y.,Ilyinskaya O.Y.,Orlova A.G.,Subochev P.V.,Safonov D.V., Shakhova N.M., Maslennikova A.V. Multimodal approach in assessment of the response of breast cancer to neoadjuvant chemotherapy. J Biomed Opt. 2018 May; 23(9): 1–11. doi: 10.1117/1.JBO.23.9.091410.
20. Orlova A.G., Turchin I.V., Plehanov V.I., Shakhova N.M., Fiks I.I., Kleshnin M.I., Konuchenko N.Yu., Kamensky V.A. Frequency-domain diffuse optical tomography with single source-detector pair for breast cancer detection. Laser Phys Lett. 2008; 5(4): 321–327. doi:10.1002/lapl.200710131.
21. Durduran T., Choe R., Baker W.B., Yodh A.G. Diffuse optics for tissue monitoring and tomography. Rep Prog Phys. 2010; 73(7): 076701. doi: 10.1088/0034-4885/73/7/076701.
22. Zhu Q., Cronin E.B., Currier A.A., Vine H.S., Huang M., Chen N., Xu C. Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction. Radiology. 2005; 237(1): 57–66. doi:10.1148/radiol.2371041236.
23. Kukreti S., Cerussi A.E., Tanamai W., Hsiang D., Tromberg B.J., Gratton E. Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy. Radiology. 2010 Jan; 254(1): 277–84. doi: 10.1148/radiol.09082134.
24. Choe R., Konecky S.D., Corlu A., Lee K., Durduran T., Busch D.R., Pathak S., Czerniecki B.J., Tchou J., Fraker D.L., Demichele A., Chance B., Arridge S.R., Schweiger M., Culver J.P., Schnall M.D., Putt M.E., Rosen M.A., Yodh A.G. Differentiation of benign and malignant breast tumors by invivo three-dimensional parallel-plate diffuse optical tomography. J Biomedic Optics. 2009; 14(2): 024020. doi:10.1117/1.3103325.
25. Simonenko G.V., Tuchin V.V. Optical properties of biological tissues. Saratov; 2007. 4. (in Russian).
26. Thomsen S., Tatman D. Physiological and pathological factors of human breast disease that can influence optical diagnosis. Ann. N.Y. Acad. Sci. 1998; 838: 171–193. doi: 10.1111/j.1749-6632.1998.tb08197.x.
Review
For citations:
Pavlov M.V., Pegov S.A., Orlova A.G., Golubyatnikov G.Yu., Shkalova L.V., Malinina P.A., Rykhtik P.I., Turchin I.V., Maslennikova A.V. THE ROLE OF DIFFUSE OPTICAL SPECTROSCOPY IN THE DIAGNOSIS OF BREAST CANCER (CASE REPORT). Siberian journal of oncology. 2019;18(4):92-101. (In Russ.) https://doi.org/10.21294/1814-4861-2019-18-4-92-101