Preview

Siberian journal of oncology

Advanced search

ROLE OF SIRTUIN 1 IN REGULATION OF MELANOMA CELL PROLIFERATION

https://doi.org/10.21294/1814-4861-2019-18-6-82-89

Abstract

Melanoma remains one of the most dangerous skin cancers among fair-skinned population. the search for new effective treatments, including therapy based on the selection of molecular targets, is one of the main and difficult tasks in the study of melanoma. One of the trends in experimental oncology is the study of microRNa’s role in carcinogenesis. MicroRNas are involved in many physiological and pathological processes, including cell proliferation, differentiation, migration, invasion, and carcinogenesis. It has been previously revealed that miR-204-5p levels are reduced in malignant tumors, in particular, in skin melanoma. the aim of this study was to determine the functional role of sIRt1 as a direct target of miR-204-5p in the pathogenesis of skin melanoma. Bioinformatics analysis allowed identification of micrRNa target genes that affected apoptosis, proliferation and cell viability. the level of proliferation of melanoma cells under the influence of small interfering RNa was estimated using the Mtt test and fluorescence microscopy. Luciferase Reporter assay was performed to evaluate whether sIRt1 was a target of miR-204-5p. Relative luciferase activity was calculated 48 hours after transfection with miR-204-5p mimic. the Mtt test showed that the proliferative activity of melanoma cells decreased 72 hours after siRNa sIRt1 knockdown. Fluorescent microscope revealed the same tendency in sIRt1 siRNa transfected cells. Mechanistic studies revealed that miR-204-5p repressed the expression of sIRt1 through binding to its 3`utR. therefore, miR-204-5p can regulate melanoma cell proliferation by targeting sIRt1 which can affect intercellular signaling systems related to cell cycle.

About the Authors

I. Yu. Dubovtseva
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health Care of the Russian Federation
Russian Federation

Postgraduate student of the Department of Pathophysiology

Researcher ID (WOS): S-9831-2018

1, P. Zheleznyaka street, 660022, Krasnoyarsk, Russia




M. V. Aksenenko
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, the Ministry of Health Care of the Russian Federation
Russian Federation

MD, PhD, Associate Professor of the Department of Pathophysiology

Researcher ID (WOS): V-1055-2017. Author ID (Scopus): 55330015100

1, P. Zheleznyaka street, 660022, Krasnoyarsk, Russia



T. G. Ruksha
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, the Ministry of Health Care of the Russian Federation
Russian Federation

MD, DSc, Professor, Head of the Department of Pathophysiology

Researcher ID (WOS): A-4801-2014. Author ID (Scopus): 23009925600

1, P. Zheleznyaka street, 660022, Krasnoyarsk, Russia



References

1. Molochkov V.A., Demidova L.V. Melanocytic nevi and skin melanoma. Moscow, 2012. 112 p. (in Russian).

2. Davydov M.I., Gantsev Sh.Kh. Oncology. Moscow, 2010. 920 p. (in Russian).

3. Gandini S., Sera F., Cattaruzza M.S., Pasquini P., Picconi O., Boyle P., Melchi C.F. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer 2005; 41: 45–60. doi:10.1016/j.ejca.2004.10.016

4. Gandini S., Sera F., Cattaruzza M.S., Pasquini P., Picconi O., Melchi F.C., Boyle P. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer 2005; 40: 41–59. doi: 10.1016/j.ejca.2005.03.034.

5. Berwick M., Buller D.B., Cust A., Gallagher R., Lee T.K., Meyskens F., Pandey S., Thomas N.E., Veierød M.B., Ward S. Melanoma epidemiology and prevention. Cancer Treat Res. 2016; 167: 17–49. doi: 10.1007/978-3-319-22539-5_2.

6. Mihajlovic M., Vlajkovic S., Jovanovic P., Stefanovic V. Primary mucosal melanomas: acomprehensive review. Int J Clin Exp Pathol 2012; 5(8): 739–753. doi: 10.1186/s13104-015-1459-3.

7. Fortes C., Vries E. Nonsolar occupational risk factors for cutaneous melanoma. Int J Dermatol. 2008 Apr; 47(4): 319–28. doi: 10.1111/j.1365-4632.2008.03653.x.

8. Wang Z. MicroRNA: A matter of life or death. World J Biol Chem. 2010; 1: 41–54. doi: 10.4331/wjbc.v1.i4.41.

9. Chen Z., Li Z., Soutto M., Wang W., Piazuelo M.B., Zhu S., Guo Y., Maturana M.J., Corvalan A.H., Chen X., Xu Z., El-Rifai W. Integrated analysis of mouse and human gastric neoplasms identifies conserved microRNA networks in gastric carcinogenesis. Gastroenterology. 2019 Mar; 156(4): 1127–1139.e8. doi: 10.1053/j.gastro.2018.11.052.

10. Celano M., Rosignolo F., Maggisano V., Pecce V., Iannone M., Russo D., Bulotta S. MicroRNA-based molecular classification of papillary thyroid carcinoma. Int J Genomics. 2017; 7: 32–43. doi: 10.1155/2017/6496570.

11. Lai X., Wolkenhauer O., Vera J. Understanding microRNA- mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res. 2016 Jul 27; 44(13): 601935. doi: 10.1093/nar/gkw550.

12. Palkina N., Komina A., Aksenenko M., Moshev A., Savchenko A., Ruksha T. MiR-204 and miR-3065 exert antitumor effect on melanoma cells. Oncol Lett. 2018 Jun; 15(6): 8269–8280. doi: 10.3892/ol.2018.8443.

13. Toda H., Kurozumi S., Kijima Y., Idichi T., Shinden Y., Yamada Y., Arai T., Maemura K., Fujii T., Horiguchi J., Natsugoe S., Seki N. Molecular pathogenesis of triple-negative breast cancer based on microRNA expression signatures: antitumor miR-204-5p targets AP1S3. J Hum Genet. 2018 Dec; 63(12): 1197–1210. doi: 10.1038/s10038-018-0510-3.

14. Díaz-Martínez M., Benito-Jardón L., Alonso L., Koetz-Ploch L., Hernando E., Teixidó J. miR-204-5p and miR-211-5p Contribute to BRAF inhibitor resistance in melanoma. Cancer Res. 2018 Feb 15; 78(4): 1017–1030. doi: 10.1158/0008-5472.CAN-17-1318.

15. Halytskiy V.A. Hypothesis of the initiation of DNA methylation de novo and allelic exclusion by small RNA. Cytology. 2008; 50(4): 277–286. (in Russian).

16. Wiking-Busch M., Ndiaye M., Liu X., Ahmad N. RNA interferencemediated knockdown of SIRT1 and/or SIRT2 in melanoma: Identification of downstream targets by large-scale proteomics analysis. J Proteomics. 2018 Jan 6; 170: 99–109. doi: 10.1016/j.jprot.2017.09.002.

17. Palkina N.V., Komina A.V., Aksenenko M.B., Belonogov R.N., Lavrentiev S.N., Ruksha T.G. Viability of melanoma B16 cells in vitro and toxicity evaluation after miR-204-5p (LNATM) inhibitor application for the miR-204-5p expression modulation in mice in vivo. Cytology. 2018; 60(3): 180–187. (in Russian).

18. Michan S., Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007; (404): 1–13. doi: 10.1042/BJ20070140.

19. Chen J., Zhang B., Wong N., Lo A.W., To K.F., Chan A.W., Ng M.H., Ho C.Y., Cheng S.H., Lai P.B., Yu J., Ng H.K., Ling M.T., Huang A.L., Cai X.F., Ko B.C. Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res. 2011 Jun 15; 71(12): 4138–49. doi: 10.1158/0008-5472.CAN-10-4274.

20. Wang F., Li H., Yan X.G., Zhou Z.W., Yi Z.G., He Z.X., Pan S.T., Yang Y.X., Wang Z.Z., Zhang X., Yang T., Qiu J.X., Zhou S.F. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial- tomesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells. Drug Des Devel Ther. 2015 Jan 17; 9: 575–601. doi: 10.2147/DDDT.S75221.

21. Grbesa I., Pajares M.J., Martínez-Terroba E., Agorreta J., Mikecin A.M., Larráyoz M., Idoate M.A., Gall-Troselj K., Pio R., Montuenga L.M. Expression of Sirtuin 1 and 2 Is associated with poor prognosis in non-small cell Lung cancer patients. PLoS One. 2010; 10 (4): e0124670. doi: 10.1371/journal.pone.0124670.

22. Lin Q., Mao Y., Song Y., Hyang D. MicroRNA-34a induces apoptosis in PC12 cells by reducing B-cell lymphoma 2 and sirtuin-1 expression. Mol Med Rep. 2015 Oct; 12(4): 5709–14. doi: 10.3892/mmr.2015.4185.

23. Gao J., Wang Y., Zhao X., Chen P., Xie L. MicroRNA-204-5pmediated regulation of SIRT1 contributes to the delay of epithelial cell cycle traversal in diabetic corneas. Invest Ophthalmol Vis Sci. 2015 Jan 22; 56(3): 1493–504. doi: 10.1167/iovs.14-15913.

24. Liu J., Xu Y., Wu Q., Ding Q., Fan W., Liu J., Xu Y., Wu Q., Ding Q., Fan W. Sirtuin 1 protects hair follicle stem cells from TNFα-mediated inflammatory stress via activating the MAPK-ERK-Mfn2 pathway. Life Sci. 2018 1; 212: 213–224. doi: 10.1016/j.lfs.2018.10.003.


Review

For citations:


Dubovtseva I.Yu., Aksenenko M.V., Ruksha T.G. ROLE OF SIRTUIN 1 IN REGULATION OF MELANOMA CELL PROLIFERATION. Siberian journal of oncology. 2019;18(6):82-89. (In Russ.) https://doi.org/10.21294/1814-4861-2019-18-6-82-89

Views: 1025


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)