Preview

Siberian journal of oncology

Advanced search

POSITRON EMISION TOMOGRAPHY FOR DETECTION OF DISTANT METASTASES IN PATIENTS WITH BREAST CANCER

https://doi.org/10.21294/1814-4861-2020-19-1-90-96

Abstract

Background. Standard imaging techniques, including chest x-ray, ultrasonography, magnetic resonance imaging and computed tomography have some limitations in terms of their ability to detect distant metastases.

The purpose of the study was to search for additional diagnostic techniques for breast cancer detection.

Material and methods. Results of 18F-FDG PET/scans were retrospectively analyzed in 50 breast cancer patients.

Results. Traditional imaging techniques showed suspicion for distant metastases in 29 patients. Of them, metastatic disease was histologically confirmed in 16 patients. Sensitivity and specificity of traditional imaging techniques were 80 % and 67.5 %, respectively. Distant metastases were not detected by 18F-FDG PET/CT in 29 patients, however in one of these patients, both CT and cytological examination performed during the follow-up period revealed pleural metastases. 18F-FDG PET/CT detected distant metastases in 21 patients. Of these patients, two had no evidence of metastases confirmed by biopsy and other diagnostic imaging methods as well as during follow-up period. The sensitivity and specificity of 18F-FDG PET/CT in detection of distant metastases were 95 % and 93.3 %, respectively.

Conclusion. Sensitivity of 18F-FDG PET/CT in the detection of breast cancer distant metastasis was significantly higher than that of the traditional imaging techniques.

About the Authors

N. G. Chanchikova
Center of Nuclear Medicine
Russian Federation
Director

26, Kolomenskaya Street, Krasnoyarsk, 660037, Russia


E. A. Karlova
Center of Nuclear Medicine
Russian Federation
MD, Radiologist

26, Kolomenskaya Street, Krasnoyarsk, 660037, Russia


A. S. Savelyeva
Center of Nuclear Medicine
Russian Federation

MD, Radiologist

Researcher ID (WOS): N‑7431‑2015. Author ID (Scopus): 56971189200

26, Kolomenskaya Street, Krasnoyarsk, 660037, Russia



O. A. Silkina
Center of Nuclear Medicine
Russian Federation

MD, Radiologist

Researcher ID (WOS): Q‑9139‑2018

26, Kolomenskaya Street, Krasnoyarsk, 660037, Russia



V. I. Chernov
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, National Research Tomsk Polytechnic University
Russian Federation

MD, Professor, Deputy Director for Science and Innovation, Head of Nuclear Medicine Department

Researcher ID (WOS): B‑6789‑2016. Author ID (Scopus): 7201429550

5, Kooperativny Street, Tomsk, 634050, Russia

30, Lenina Prospect, Tomsk, 634050, Russia



R. V. Zelchan
Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

MD, PhD, Radiologist

Researcher ID (WOS): C‑8597‑2012. Author ID (Scopus): 56901332100

5, Kooperativny Street, Tomsk, 634050, Russia



I. G. Sinilkin
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

MD, PhD, Senior Researcher, Nuclear Medicine Department

Researcher ID (WOS): С‑9282‑2012. Author ID (Scopus): 6506263379

5, Kooperativny Street, Tomsk, 634050, Russia



O. D. Bragina
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

MD, PhD, researcher, Nuclear Medicine Department

Researcher ID (WOS): E‑9732‑2017. Author ID (Scopus): 57190936256

5, Kooperativny Street, Tomsk, 634050, Russia



A. A. Medvedeva
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

MD, PhD, Senior Researcher, Nuclear Medicine Department

Researcher ID (WOS): D‑7455‑2012. Author ID (Scopus): 57188995343

5, Kooperativny Street, Tomsk, 634050, Russia



References

1. Groheux D., Moretti J.L., Baillet G., Espie M., Giacchetti S., Hindie E., Hennequin C., Vilcoq J.R., Cuvier C., Toubert M.E., Filmont J.E., Sarandi F., Misset J.L. Effect of (18)F‑FDG PET/CT imaging in patients with clinical stage II and III breast cancer. Int J Radiat Oncol Biol Phys. 2008 Jul 1; 71(3): 695–704. doi: 10.1016/j.ijrobp.2008.02.056.

2. Chernov V.I., Bragina O.D., Sinilkin I.G., Medvedeva A.A., Zel’chan R.V. Radionuclide teranostic of malignancies. Journal of radiology and nuclear medicine. 2016; 97(5): 306–313. (in Russian).

3. Chernov V.I., Medvedeva A.A., Sinilkin I.G., Zel’chan R.V., Bragina O.D., Skuridin V.S. Experience in developing innovative radiopharmaceuticals at the Tomsk Research Institute of Oncology. Siberian Journal of Oncology. 2015; S2: 45–47. (in Russian).

4. Heusner T.A., Kuemmel S., Koeninger A., Hamami M.E., Hahn S., Quinsten A., Bockisch A., Forsting M., Lauenstein T., Antoch G., Stahl A. Diagnostic value of diffusionweighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole‑body breast cancer staging. Eur J Nucl Med Mol Imaging. 2010 Jun; 37(6): 1077–86. doi: 10.1007/s00259‑010‑1399‑z.

5. Vag T., Steiger K., Rossmann A., Keller U., Noske A., Herhaus P., Ettl J., Niemeyer M., Wester H.J., Schwaiger M. PET imaging of chemokine receptor CXCR4 in patients with primary and recurrent breast carcinoma. EJNMMI Res. 2018 Sep 6; 8(1): 90. doi: 10.1186/s13550‑018‑0442‑0.

6. Tewson T., Krohn K. PET radiopharmeceuticals: state‑of‑the‑artand future prospects. Semin Nucl Med. 1998; 28: 221–34. doi: 10.1016/s0001‑2998(98)80028‑7.

7. Titskaya A.A., Chernov V.I., Slonimskaya E.M., Sinilkin I.G. Mammoscintigraphy with 199TI for breast cancer detection. Siberian Journal of Oncology. 2008; 6: 5–10. (in Russian).

8. Benard F., Turcotte E. Imaging in breast cancer: single‑photon computed tomography and positron‑emission tomography. Breast Cancer Res 2005; 7(4): 153–62. DOI: 10.1186/bcr1201.

9. Eubank W.B., Mankoff D.A. Evolving role of positron emission tomography in breast cancer imaging. Semin Nucl Med 2005; 35(2): 84–99. doi: 10.1053/j.semnuclmed.2004.11.001.

10. Kelloff G.J., Hoffman J.M., Johnson B., Scher H.I., Siegel B.A., Cheng E.Y., Cheson B.D., O'shaughnessy J., Guyton K.Z., Mankoff D.A., Shankar L., Larson S.M., Sigman C.C., Schilsky R.L., Sullivan D.C. Progress and promise of FDG‑PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005; 11(8): 2785–808. doi: 10.1158/1078‑0432.CCR‑04‑2626.

11. Haidar M., Baassiri A., Maroun G., Barakat A., Nassar L., Abusamra M., Gharzeddine K., Berjawi G. New era of PET/CT in breast cancer: high‑resolution PET/dfCT. Nucl Med Commun. 2018 Nov; 39(11): 1039–1044. doi: 10.1097/MNM.0000000000000907.

12. Mankoff D.A., Muzi M., Krohn K.A. Quantitative positron emission tomography imaging to measure tumor response to therapy: what is the best method? Mol Imaging Biol 2003; 5(5): 281–5. doi: 10.1016/j.mibio.2003.09.002.

13. Warburg O. The metabolism of tumors. New York: Richard R. Smith; 1931.

14. Bos R., van Der Hoeven J.J., van Der Wall E., van Der Groep P., van Diest P.J., Comans E.F., Joshi U., Semenza G.L., Hoekstra O.S., Lammertsma A.A., Molthoff C.F. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 2002; 20(2): 379–87. doi: 10.1200/JCO.2002.20.2.379.

15. Avril N., Menzel M., Dose J., Schelling M., Weber W., Jänicke F., Nathrath W., Schwaiger M. Glucose metabolism of breast cancer assessed by 18F‑FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med 2001; 42(1): 9–16.

16. Mankoff D.A., Dunnwald L.K., Gralow J.R., Ellis G.K., Charlop A., Lawton T.J., Schubert E.K., Tseng J., Livingston R.B. Blood flow and metabolism in locally advancedbreast cancer: relationship to response to therapy. J Nucl Med. 2002; 43(4): 500–9.

17. Oshida M., Uno K., Suzuki M., Nagashima T., Hashimoto H., Yagata H., Shishikura T., Imazeki K., Nakajima N. Predicting the prognoses of breast carcimoma patientswith positron emission tomography using 2‑deoxy‑2‑fluoro[18F]‑D‑glucose. Cancer. 1998(1): 2227–34.

18. Alessio A.M., Kinahan P.E., Cheng P.M., Vesselle H., Karp J.S. PET/CT scanner instrumentation, challenges, and solutions. Radiol Clin North Am. 2004 Nov; 42(6): 1017–32.

19. Quon A., Gambhir S.S. FDG‑PET and beyond: Molecular breast cancer imaging. J Clin Oncol. 2005; 23: 1664–1673. doi: 10.1200/JCO.2005.11.024.

20. Tafra L. Positron emission tomography (PET) and mammography (PEM) for breast cancer: importance to surgeons. Ann Surg Oncol. 2007 Jan; 14(1): 3–13. doi: 10.1245/s10434‑006‑9019‑7.

21. Eubank W.B. Diagnosis of recurrent and metastatic disease using F‑18 fluorodeoxyglucose‑positron emission tomography. PET Clin. 2006 Jan; 1(1): 15–24. doi: 10.1016/j.cpet.2005.09.002.

22. Fogelman I., Cook G., Israel O., Van der Wall H. Positron emission tomography and skeletal metastases. Semin Nucl Med. 2005 Apr; 35(2): 135–42. doi: 10.1053/j.semnuclmed.2004.11.005.

23. Du Y., Cullum I., Illidge T.M., Ell P.J. Fusion of metabolic function and morphology: Sequential [18F] Fluorodeoxyglucose positron‑emission tomography/computed tomography studies yield new insights into the natural history of skeletal metastases in breast cancer. J Clin Oncol. 2007 Aug 10; 25(23): 3440–7. doi: 10.1200/JCO.2007.11.2854.

24. Nakai T., Okuyama C., Kubota T., Yamada K., Ushijima Y., Taniike K., Suzuki T., Nishimura T. Pitfalls of FDG‑PET for the diagnosis of osteoblastic skeletal metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging. 2005 Nov; 32(11): 1253–8. doi: 10.1007/s00259‑005‑1842‑8.

25. Fuster D., Duch J., Paredes P., Velasco M., Muñoz M., Santamaría G., Fontanillas M., Pons F. Preoperative staging of large primary 1118 Role of PET/CT in Primary Breast Cancer Staging breast cancer with [18F] fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol. 2008 Oct 10; 26(29): 4746–51. doi: 10.1200/JCO.2008.17.1496.

26. Carkaci S., Macapinlac H.A., Cristofanilli M., Mawlawi O., Rohren E., Gonzalez Angulo A.M., Dawood S., Resetkova E., Le-Petross H.T., Yang W.T. Retrospective study of 18F‑FDG PET/CT in the diagnosis of inflammatory breast cancer: Preliminary data. J Nucl Med. 2009 Feb; 50(2): 231–8. doi: 10.2967/jnumed.108.056010.

27. Alberini J.L., Lerebours F., Wartski M., Fourme E., Le Stanc E., Gontier E., Madar O., Cherel P., Pecking A.P. 18F‑fluorodeoxyglucose positron emission tomography/computed tomography (FDG‑PET/CT) imaging in the staging and prognosis of inflammatory breast cancer. Cancer. 2009 Nov 1; 115(21): 5038–47. doi: 10.1002/cncr.24534.

28. Groheux D., Moretti J.L., Baillet G., Espie M., Giacchetti S., Hindie E., Hennequin C., Vilcoq J.R., Cuvier C., Toubert M.E., Filmont J.E., Sarandi F., Misset J.L. Effect of (18)F‑FDG PET/CT imaging in patients with clinical stage II and III breast cancer. Int J Radiat Oncol Biol Phys. 2008 Jul 1; 71(3): 695–704. doi: 10.1016/j.ijrobp.2008.02.056.

29. Heusner T.A., Kuemmel S., Koeninger A., Hamami M.E., Hahn S., Quinsten A., Bockisch A., Forsting M., Lauenstein T., Antoch G., Stahl A. Diagnostic value of diffusionweighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole‑body breast cancer staging. Eur J Nucl Med Mol Imaging. 2010 Jun; 37(6): 1077–86. doi: 10.1007/s00259‑010‑1399‑z.


Review

For citations:


Chanchikova N.G., Karlova E.A., Savelyeva A.S., Silkina O.A., Chernov V.I., Zelchan R.V., Sinilkin I.G., Bragina O.D., Medvedeva A.A. POSITRON EMISION TOMOGRAPHY FOR DETECTION OF DISTANT METASTASES IN PATIENTS WITH BREAST CANCER. Siberian journal of oncology. 2020;19(1):90-96. (In Russ.) https://doi.org/10.21294/1814-4861-2020-19-1-90-96

Views: 842


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)