EXPRESSION MICRORNA IN LARYNX CANCER
Abstract
About the Authors
E. G. NikitinaRussian Federation
Nikitina Ekaterina Gennadievna - M.S., Junior Researcher of the Laboratory of Oncovirology, Tomsk Cancer Research Institute; Junior Researcher of Tomsk State University.
Phone: +7 3822 51-29-57. E-mail: ekatarinanikitina@gmail.com
O. V. Cheremisina
Russian Federation
Cheremisina Olga Vladimirovna - MD., DSc, Professor, Head of the Endoscopy Department of Tomsk Cancer Research Institute.
Phone: +7 3822 41-80-91. E-mail: CheremisinaOV@oncology.tomsk.ru
V. A. Bychkov
Russian Federation
Bychkov Viacheslav Alekseevich - MD., PhD., Senior Researcher of the Laboratory of Oncovirology, Tomsk Cancer Research Institute; Junior Researcher of Tomsk State University.
Phone: +7 3822 51-29-57. E-mail: va.bych@gmail.com
D. E. Kulbakin
Russian Federation
Kulbakin Denis Evgenievic - MD., PhD., Junior Researcher of the Head and Neck Department, Tomsk Cancer Research Institute.
Phone: +7 3822 41-80-62. E-mail: kulbakin_d@mail.ru
E. L. Choinzonov
Russian Federation
Choynzonov Evgeny Lhamatsirenovich - MD., Academician of RAN, Professor, Director of Tomsk Cancer Research Institute
Phone: +7 3822 51-10-39. E-mail: nii@oncology.tomsk.ru
V. N. Stegniy
Russian Federation
Stegniy Vladimir Nikolaevich - MD., DSc, Professor, Head of the Cytology and Genetics Department of Biology Institute of Tomsk State University.
Phone: +7 3822 52-97-52. E-mail: stegniy@ref.tsu.ru
N. V. Litviakov
Russian Federation
Litviakov Nikolay Vasilievich - MD., DSc, Head of the Laboratory of Oncovirology, Tomsk Cancer Research Institute; Senior Researcher of Tomsk State University.
Phone: +7 3822 51-46-07. E-mail: nvlitv72@yandex.ru
References
1. Löffler D., Brocke-Heidrich K., Pfeifer G., Stocsits C., Hackermüller J., Kretzschmar A.K., Burger R., Gramatzki M., Blumert C., Bauer K., Cvijic H., Ullmann A.K., Stadler P.F., Horn F. Interleukin-6 –dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer // Blood. 2007. Vol. 110 (4). P. 1330–1333.
2. Adam L., Zhong M., Choi W., Qi W., Nicoloso M., Arora A., Calin G., Wang H., Siefker-Radtke A., McConkey D. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy // Clin. Cancer Res. 2009. Vol. 15 (16). P. 5060–5072. doi: 10.1158/1078-0432.CCR-08-2245.
3. Mongroo P.S., Rustgi A.K. The role of the miR-200 family in epithelial-mesenchymal transition // Cancer Biol. Ther. 2010. Vol. 10 (3). P. 219–222.
4. Ambros V. The functions of animal microRNAs // Nature. 2004. Vol. 431. (7006). P. 350–355.
5. Nikitina E., Urazova L., Stegny V. MicroRNAs and human cancer // Exp. Oncol. 2012. Vol. 34 (1). P. 2–8.
6. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function // Cell. 2004. Vol. 116 (2). P. 281–297.
7. O’Donnell K.A., Wentzel E.A., Zeller K.I., Dang C.V., Mendell J.T. c-Myc-regulated microRNAs modulate E2F1 expression // Nature. 2005. Vol. 435 (7043). P. 839–843.
8. Bracken C.P., Gregory P.A., Kolesnikoff N., Bert A.G., Wang J., Shannon M.F., Goodall G.J. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition // Cancer Res. 2008. Vol. 68. № 19. P. 7846–7854. doi: 10.1158/0008-5472.CAN-08-1942.
9. Park S.-M., Gaur A.B., Lengyel E., Peter M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2 // Genes Dev. 2008. Vol. 22. (7). P.894–907. doi: 10.1101/gad.1640608.
10. Cao P., Zhou L., Zhang J., Zheng F., Wang H., Ma D., Tian J. Comprehensive expression profiling of microRNAs in laryngeal squamous cell carcinoma // Head Neck. 2013. Vol. 35 (5). P. 720–728. doi: 10.1002/hed.23011.
11. Peltier H.J., Latham G.J. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues // RNA. 2008. Vol. 14 (5). P. 844–852. doi: 10.1261/rna.939908.
12. Chang S.S., Jiang W.W., Smith I., Poeta L.M., Begum S., Glazer C., Shan S., Westra W., Sidransky D., Califano J.A. MicroRNA alterations in head and neck squamous cell carcinoma // Intern. J. Cancer. 2008. Vol. 123 (12). P. 2791–2797. doi: 10.1002/ijc.23831.
13. Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR // Nucleic Acids Res. 2001. Vol. 29 (9). P. e45-e45.
14. Chen Z., Ma T., Huang C., Hu T., Li J. The Pivotal Role of microR- NA-155 in the Control of Cancer // Journal of Cellular Physiology. 2014. Vol. 229 (5). P. 545–550. doi: 10.1002/jcp.24492.
15. Qin A.-Y., Zhang X.-W., Liu L., Yu J.-P., Li H., Wang S.-Z.E., Ren X.-B., Cao S. MiR-205 in cancer: An angel or a devil? // Eur. J. Cell Biol. 2013. Vol. 92. (2). P. 54–60. 29. Ren J., Zhu D., Liu M., Sun Y., Tian L. Downregulation of miR-21 modulates Ras expression to promote apoptosis and suppress invasion of Laryngeal squamous cell carcinoma // Eur. J. Cancer. 2010. Vol. 46 (18). P. 3409–3416. doi: 10.1016/j.ejca.2010.07.047.
16. Chu E.A., Kim Y.J. Laryngeal cancer: diagnosis and preoperative work-up // Otolaryngol. Clin. North Am. 2008. Vol. 41 (4). P. 673–695. doi: 10.1016/j.otc.2008.01.016.
17. Tian L., Zhang J., Ge J., Xiao H., Lu J., Fu S., Liu M., Sun Y. MicroRNA-205 suppresses proliferation and promotes apoptosis in laryngeal squamous cell carcinoma // Med. Oncol. 2014. Vol. 31 (1). P. 785. doi: 10.1007/s12032-013-0785-3.
18. Cochrane D.R., Howe E.N., Spoelstra N.S., Richer J.K. Loss of miR-200c: a marker of aggressiveness and chemoresistance in female reproductive cancers // J. Oncol. 2009. Vol. 2010: 821717. doi: 10.1155/2010/821717.
19. Zamore P.D., Haley B. Ribo-gnome: the big world of small RNAs // Science. 2005. Vol. 309 (5740). P. 1519–1524.
20. Concepcion C.P., Bonetti C., Ventura A. The miR-17-92 family of microRNA clusters in development and disease // Cancer J. 2012. Vol. 18 (3). P. 262–267. doi: 10.1097/PPO.0b013e318258b60a.
21. Zhou J.-J., Zheng S., Sun L.-F., Zheng L. MicroRNA regulation network in colorectal cancer metastasis // World J. Biol. Chem. 2014. Vol. 5 (3). P. 301. doi: 10.4331/wjbc.v5.i3.301.
22. Di Martino M.T., Gullà A., Cantafio M.E.G., Lionetti M., Leone E., Amodio N., Guzzi P.H., Foresta U., Conforti F., Cannataro M. In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma // Oncotarget. 2013. Vol. 4 (2). P. 242–255.
23. Esquela-Kerscher A., Slack F.J. Oncomirs – microRNAs with a role in cancer // Nature Rev. Cancer. 2006. Vol. 6 (4). P. 259–269.
24. Feng X., Wang Z., Fillmore R., Xi Y. MiR-200, a new star miRNA in human cancer // Cancer lett. 2014. Vol. 344 (2). P. 166–173. doi: 10.1016/j.canlet.2013.11.004.
25. Gurtan A.M., Sharp P.A. The role of miRNAs in regulating gene expression networks // J. Mol. Biol. 2013. Vol. 425 (19). P. 3582–3600. doi: 10.1016/j.jmb.2013.03.007.
26. Hong L., Han Y., Zhang Y., Zhang H., Zhao Q., Wu K., Fan D. MicroRNA-21: a therapeutic target for reversing drug resistance in cancer // Expert Opin. Ther. Targets. 2013. Vol. 17 (9) P. 1073–1080. doi: 10.1517/14728222.2013.819853.
27. Hui A.B., Lenarduzzi M., Krushel T., Waldron L., Pintilie M., Shi W., Perez-Ordonez B., Jurisica I., O’Sullivan B., Waldron J. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas // Clin. Cancer Res. 2010. Vol. 16 (4). P. 1129–1139. doi: 10.1158/1078-0432.CCR-09-2166.
28. Iorio M.V., Croce C.M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review // EMBO Mol. Med. 2012. Vol. 4 (3). P. 143–159. doi: 10.1002/emmm.201100209.
29. Iyevleva A.G., Kuligina E.S., Mitiushkina N.V., Togo A.V., Miki Y., Imyanitov E.N. High level of miR-21, miR-10b, and miR-31 expression in bilateral vs. unilateral breast carcinomas // Breast Cancer Res. Treat. 2012. Vol. 131 (3). P. 1049–1059. doi: 10.1007/s10549-011-1845-z.
30. Korpal M., Lee E.S., Hu G., Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2 // J. Biol. Chem. 2008. Vol. 283 (22). P. 14910–14914. doi: 10.1074/jbc.C800074200. .
31. Krichevsky A.M., Gabriely G. miR-21: a small multi-faceted RNA // J. Cell. Mol. Med. 2009. Vol. 13 (1). P. 39–53. doi: 10.1111/j.1582-4934.2008.00556.x.
32. Löffler D., Brocke-Heidrich K., Pfeifer G., Stocsits C., Hackermüller J., Kretzschmar A.K., Burger R., Gramatzki M., Blumert C., Bauer K., Cvijic H., Ullmann A.K., Stadler P.F., Horn F. Interleukin-6 –dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer // Blood. 2007. Vol. 110 (4). P. 1330–1333.
33. Mongroo P.S., Rustgi A.K. The role of the miR-200 family in epithelial-mesenchymal transition // Cancer Biol. Ther. 2010. Vol. 10 (3). P. 219–222.
34. Nikitina E., Urazova L., Stegny V. MicroRNAs and human cancer // Exp. Oncol. 2012. Vol. 34 (1). P. 2–8.
35. O’Donnell K.A., Wentzel E.A., Zeller K.I., Dang C.V., Mendell J.T. c-Myc-regulated microRNAs modulate E2F1 expression // Nature. 2005. Vol. 435 (7043). P. 839–843.
36. Park S.-M., Gaur A.B., Lengyel E., Peter M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2 // Genes Dev. 2008. Vol. 22. (7). P.894–907. doi: 10.1101/gad.1640608.
37. Peltier H.J., Latham G.J. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues // RNA. 2008. Vol. 14 (5). P. 844–852. doi: 10.1261/rna.939908.
38. Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR // Nucleic Acids Res. 2001. Vol. 29 (9). P. e45-e45.
39. Qin A.-Y., Zhang X.-W., Liu L., Yu J.-P., Li H., Wang S.-Z.E., Ren X.-B., Cao S. MiR-205 in cancer: An angel or a devil? // Eur. J. Cell Biol. 2013. Vol. 92. (2). P. 54–60. 29. Ren J., Zhu D., Liu M., Sun Y., Tian L. Downregulation of miR-21 modulates Ras expression to promote apoptosis and suppress invasion of Laryngeal squamous cell carcinoma // Eur. J. Cancer. 2010. Vol. 46 (18). P. 3409–3416. doi: 10.1016/j.ejca.2010.07.047.
40. Tian L., Zhang J., Ge J., Xiao H., Lu J., Fu S., Liu M., Sun Y. MicroRNA-205 suppresses proliferation and promotes apoptosis in laryngeal squamous cell carcinoma // Med. Oncol. 2014. Vol. 31 (1). P. 785. doi: 10.1007/s12032-013-0785-3.
41. Zamore P.D., Haley B. Ribo-gnome: the big world of small RNAs // Science. 2005. Vol. 309 (5740). P. 1519–1524.
42. Zhou J.-J., Zheng S., Sun L.-F., Zheng L. MicroRNA regulation network in colorectal cancer metastasis // World J. Biol. Chem. 2014. Vol. 5 (3). P. 301. doi: 10.4331/wjbc.v5.i3.301.
Review
For citations:
Nikitina E.G., Cheremisina O.V., Bychkov V.A., Kulbakin D.E., Choinzonov E.L., Stegniy V.N., Litviakov N.V. EXPRESSION MICRORNA IN LARYNX CANCER. Siberian journal of oncology. 2015;1(2):46-52. (In Russ.)