Synergistic effect of antitumor activity of doxorubicin and bicomponent nanostructures based on aluminum oxide
https://doi.org/10.21294/1814-4861-2020-19-2-82-89
Abstract
Introduction. There are high-thech methods of nanoparticle production with controlled morphology and physical and chemical properties. Alumina-based mesoporous nanostructures have low toxicity and biocompatibility. FDI recommends alumina for biomedical application. Alumina inhibits the grow of cancer due to positive zeta-potential and low solubility in water. We observed the synergistic effect of joint application of doxorubicin and nanostructures. This approach reduces drug concentration and its toxicity.
Purpose: to synthesize nanostructures with different surface potentials and to study toxicity of these nanostructures alone and in combination with doxorubicin.
Material and Methods. The alumina-based nanostructures were obtained by the hydrolysis of nanopowder. The morphology of nanostructures was investigated by transmission electron microscopy with an integrated system of energy dispersive analysis. The phase composition of the particles was determined by x-ray diffraction. The effect of the synthesized nanostructures on the viability of cell lines was determined using the MTT test.
Results. The synthesized nanostructures have a low toxicity and can be used as an adjuvant for doxorubicin.
Conclusion. The combined use of doxorubicin and bicomponent nanostructures leads to an increase in the damaging effect of doxorubicin on Neuro-2a cells.
About the Authors
O. V. BakinaRussian Federation
Olga V. Bakina - PhD, Researcher, Researcher ID (WOS): A-3184-2014. Author ID (Scopus): 57200860509.
2/4, Akademichesky pr., 634055, Tomsk
N. V. Svarovskaya
Russian Federation
Natalia V. Svarovskaya - PhD, Senior Researcher, Researcher ID (WOS): A-3890-2014. Author ID (Scopus): 6505835959.
2/4, Akademichesky pr., 634055, Tomsk
A. A. Miller
Russian Federation
Ahdrey A. Miller - PhD, Scientist.
2/4, Akademichesky pr., 634055, Tomsk
A. S. Lozhkomoev
Russian Federation
Aleksandr S. Lozhkomoev - PhD, Head of Laboratory, Researcher ID (WOS): O-3024-2013. Author ID (Scopus): 26664893000.
2/4, Akademichesky pr., 634055, Tomsk
A. V. Avgustinovich
Russian Federation
Alexandra V. Avgustinovich - MD, PhD, Researcher, Department of Abdominal Oncology, Cancer Research Institute, Researcher ID (WOS) D-6062-2012. Author ID (Scopus) 56392965300.
5, Kooperativny street, 634009, Tomsk
А. Yu. Dobrodeev
Russian Federation
Alexey Yu. Dobrodeev - MD, DSc, Leading Researcher, Department of Abdominal Oncology, Cancer Research Institute, Researcher ID (WOS): C-8320-2012. Author ID (Scopus): 24832974200.
5, Kooperativny street, 634009, TomskL. V. Spirina
Russian Federation
Ludmila V. Spirina - MD, DSc, Leading Researcher, Cancer Research Institute, Laboratory of Tumor Biochimestry, ID (WOS): A-7760-2012. Author ID (Scopus): 36960462500.
5, Kooperativny street, 634009, Tomsk
S. G. Afanasyev
Russian Federation
Sergey G. Afanasyev - MD, DSc, Professor, Head of the Department of Abdominal Oncology, Cancer Research Institute, Researcher ID (WOS): D-2084-2012. Author ID (Scopus): 7005336732.
5, Kooperativny street, 634009, Tomsk
References
1. Singh A.P., Biswas A., Shukla A., Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther. 2019 Aug 30; 4: 33. doi: 10.1038/s41392-019-0068-3.
2. Buttacavoli M., Albanese N.N., Di Cara G., Alduina R., Faleri C., Gallo M., Pizzolanti G., Gallo G., Feo S., Baldi F., Cancemi P. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget. 2017 Dec 23; 9(11): 9685-9705. doi: 10.18632/oncotarget.23859.
3. Li Z., Tan S., Li S., Shen Q., Wang K. Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol Rep. 2017 Aug; 38(2): 611-624. doi: 10.3892/or.2017.5718.
4. Zhao N., WoodleM.C., MixsonA.J. Advances in delivery systems for doxorubicin. J Nanomed Nanotechnol. 2018; 9(5). pii: 519. doi: 10.4172/2157-7439.1000519.
5. Chatterjee K., Zhang J., Honbo N., Karlinerb J.S. Doxorubicin Cardiomyopathy. Cardiology. 2010; 115(2): 155-62. doi: 10.1159/000265166.
6. NagaiK., Fukuno S., OtaniK., Nagamine Y., Omotani S., Hatsuda Y., Myotoku M., Konishi H. Prevention of Doxorubicin-Induced Renal Toxicity by Theanine in Rats. Pharmacology. 2018; 101(3-4): 219-224. doi: 10.1159/000486625.
7. Verma A.K., Leekha A., Kumar V., Moin I., Kumar S. Biodistribution and In-vivo efficacy of doxorubicin loaded chitosan nanoparticles in Ehrlich Ascites Carcinoma (EAC) bearing Balb/C mice. J Nanomed Nanotech. 2018; 9: 510. doi: 10.4172/2157-7439.1000510.
8. Li J., Du X., Zheng N., Xu L., Xu J., Li S. Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity. Colloids Surf B Biointerfaces. 2016 May 1; 141: 374-381. doi: 10.1016/j.colsurfb.2016.02.009.
9. HariharanR., SuganthiA., Senthilkumar S., RajarajaM. Synthesis and characterization of daunorubicin modified ZnO/PVP nanorods and its photodynamic action. Photochem Photobiol A Chem. 2013; 252: 107-115. doi: j.jphotochem.2012.11.017.
10. Xifre-PerezE., Ferre-Borull J., Pallares J., MarsalL.F. Mesopo-rous alumina as a biomaterial for biomedical applications. Mesoporous Biomater. 2015; 2(1): 13-32. doi: 10.1515/mesbi-2015-0004.
11. Lerner M.I., Mikhaylov G., Tsukanov A.A., Lozhkomoev A.S., GutmanasE., Psakhye S.G., Vasiljeva O. Crumpled Aluminum Hydroxide Nanostructures as a Microenvironment Dysregulation Agent for Cancer Treatment Nano Lett. 2018 Sep 12; 18(9): 5401-10. doi: 10.1021/acs.nanolett.8b01592.
12. Bhattacharyya S., Kudgus R., Bhattacharya R., Mukherjee P. Inorganic Nanoparticles in Cancer Therapy. Pharm Res. 2011 Feb; 28(2): 237-59. doi: 10.1007/s11095-010-0318-0.
13. Saliani M., Jalal R., Goharshadi E.K. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells. Nanomed J. 2016; 3(1): 1-14. doi: 10.7508/NMJ.2016.01.001.
14. Park S.J., Park Y.C., Lee S.W., Jeong M.S., Yu K.N., Jung H., Lee J.K., Kim J.S., Cho M.H. Comparing the toxic mechanism of synthesized zinc oxide nanomaterials by physicochemical characterization and reactive oxygen species properties. Toxicol Lett. 2011 Dec 15; 207(3): 197-203. doi: 10.1016/j.toxlet.2011.09.011.
15. Moon S.H., Choi W.J., Choi S.W., Kim E.H., Kim J., Lee J.O., Kim S.H. Anti-cancer activity of ZnO chips by sustained zinc ion release. Toxicol Rep. 2016 Mar 19; 3: 430-438. doi: 10.1016/j.toxrep.2016.03.008.
16. Rasmussen J.W., Martinez E., Louka P., WingettD.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010 Sep; 7(9): 1063-77. doi: 10.1517/17425247.2010.502560.
17. Han N., Zhao Q., Wan L., Wang Y., Gao Y., Wang P., Wang P., Zhang J., Jiang T., Wang S. Hybrid lipid-Capped mesoporous silica for stimuli-Responsive drug release and overcoming multidrug resistance. ACS Appl Mater Interfaces. 2015 Feb 11; 7(5): 3342-51. doi: 10.1021/am5082793.
Review
For citations:
Bakina O.V., Svarovskaya N.V., Miller A.A., Lozhkomoev A.S., Avgustinovich A.V., Dobrodeev А.Yu., Spirina L.V., Afanasyev S.G. Synergistic effect of antitumor activity of doxorubicin and bicomponent nanostructures based on aluminum oxide. Siberian journal of oncology. 2020;19(2):82-89. (In Russ.) https://doi.org/10.21294/1814-4861-2020-19-2-82-89