Preview

Сибирский онкологический журнал

Расширенный поиск

Абскопальный эффект радиотерапии и гипертермии: роль внеклеточных везикул

https://doi.org/10.21294/1814-4861-2020-19-2-108-115

Полный текст:

Аннотация

В обзоре представлены обобщенные данные о роли ионизирующего излучения/гипертермии как модулирующих факторов в секреции/составе экзосом. Опухолевые экзосомы являются важными участниками формирования микроокружения опухоли путем модуляции воспалительного ответа в опухоли, влияния на дифференцировку фибробластов и мезенхимных клеток в миофибробласты, запуска ангиогенного процесса, стимулирования эпителиально-мезенхимальной трансформации и формирования опухолевых прениш. Описаны некоторые механизмы поведения опухолевых клеток-реципиентов, получающих экзосомы от облученных клеток, включая активацию передачи сигналов Akt, стабилизацию MMP9/MMP2, усиление опосредованной экзосомами подвижности. Модели invitro продемонстрировали эффективность экзосом из мезенхимальных стволовых клеток (МСК) для модуляции как прямого воздействия радиации/гипертермии, так и усиления абскопального эффекта. Экзосомы, полученные из MsC, являются наиболее привлекательным носителем для доставки белков, микроРНК, лекарств, металлов к опухолевым клеткам реципиента. Экзосомы MsC усиливают эффекты как лучевой терапии, так и гипертермии в экспериментальных исследованиях. Тем не менее остается ряд важных вопросов, касающихся: а) наиболее эффективных вариантов введения экзосом MsC для модуляции лучевой терапии/гипертермии; б) дозы ионизирующего излучения; в) вариантов гипертермии; г) детальных механизмов воздействия экзосом из облученных МСК на опухолевые клетки и микроокружение опухоли.

Об авторах

Н. В. Юнусова
Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр, Российская академия наук; Сибирский государственный медицинский университет
Россия

Юнусова Наталья Валерьевна - ведущий научный сотрудник лаборатории биохимии опухолей, НИИО ТНИМЦ РАН, ResearcherID (WOS): C-9275-2012. Author ID (Scopus): 8354141400.

Томск, 634009, пер. Кооперативный, 5; Томск, 634050, Московский тракт, 2



А. А. Федоров
Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр, Российская академия наук
Россия

Федоров Александр Александрович - научный сотрудник отделения общей онкологии, Научно-исследовательский институт онкологии, Researcher ID (WOS): R-5727-2017.

Томск, 634009, пер. Кооперативный, 5



Ж. А. Старцева
Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр, Российская академия наук
Россия

Старцева Жанна Александровна - заведующая отделением лучевой терапии, Научно-исследовательский институт онкологии, ResearcherID (WOS): E-1286-2012. AuthorID (Scopus): 57188995294.

Томск, 634009, пер. Кооперативный, 5



J. H. Yeon
Center for BioMicrosystems, Brain science Institute, Korea Institute of science and technology (KIsT); Department of Integrative Biosciences, University of Brain Education
Россия

Ju Hun Yeon - Center for BioMicrosystems, Brain Science Institute, KIST; Department of Integrative Biosciences, UBE.

5. Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792; Cheonan, 31228



Список литературы

1. Siva S., Lobachevsky P., MacManus M.P., Kron T., A., Lobb R.J., Ventura J., BestN., Smith J., BallD., Martin O.A. Radiotherapy for non-small cell lung cancer induces DNA damage response in both irradiated and out-of-field normal tissues. Clin Cancer Res. 2016 Oct 1; 22(19): 48174826. doi: 10.1158/1078-0432.CCR-16-0138.

2. Tang Y., Cui Y., Li Z., Jiao Z., Zhang Y, He Y, Chen G., Zhou Q., Wang W., Zhou X., Luo J., Zhang S. Radiation-induced miR-208a increases the proliferation and radioresistance by targeting p21 in human lung cancer cells. J Exp Clin Cancer Res. 2016 Jan 12; 35: 7. doi: 10.1186/s13046-016-0285-3.

3. Wang H., Zhang L., Shi Y, Javidiparsijani S., Wang G., Li X., Ouyang W, Zhou J., Zhao L., Wang X., Zhang X., Gao F, Liu J., Luo J., Tang J. Oncol Lett. Abscopal antitumor immune effects of magnet-mediated hyperthermia at a high therapeutic temperature on Walker-256 carcinosarcomas in rats. Oncol. Lett. 2014 Mar; 7(3): 764770. doi: 10.3892/ol.2014.1803.

4. Tamkovich S.N., Tutanov O.S., LaktionovP.P. Exosomes: Generation, Structure, Transport, Biological Activity, and Diagnostic Application. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 2016; 10 (3): 163-173. doi: 10.1134/S1990747816020112.

5. Yunusova N.V., Tugutova E.A., Tamkovich S.N., Kondakova I.V The Role of Exosomal Tetraspanins and Proteases in Tumor Progression Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2018; 12(3): 191202. doi: 10.1134/S1990750818030095.

6. Jabbari N., NawazM., Rezaie J. Ionizing Radiation Increases the Activity of Exosomal Secretory Pathway in MCF-7 Human Breast Cancer Cells: A Possible Way to Communicate Resistance against Radiotherapy. Int J Mol Sci. 2019 Jul 25; 20(15). pii: E3649. doi: 10.3390/ijms20153649.

7. Jelonek K., Widlak P., Pietrowska M. The Influence of Ionizing Radiation on Exosome Composition, Secretion and Intercellular Communication. Protein Pept Lett. 2016; 23(7): 65663. doi: 10.2174/0929866523666160427105138.

8. Luo A., Zhou X., Shi X., Zhao Y., Men Y., Chang X., Chen H., Ding F., Li Y., Su D., Xiao Z., Hui Z., Liu Z. Exosome-derived miR-339-5p mediates radiosensitivity by targeting Cdc25A in locally advanced esophageal squamous cell carcinoma. Oncogene. 2019 Jun; 38(25): 49905006. doi: 10.1038/s41388-019-0771-0.

9. Dai X., Liao K., Zhuang Z., Chen B., Zhou Z., Zhou S., Lin G., Zhang F., Lin Y., Miao Y., Li Z., Huang R., Qiu Y, Lin R. AHIF promotes glioblastoma progression and radioresistance via exosomes. Int J Oncol. 2019 Jan; 54(1): 261270. doi: 10.3892/ijo.2018.4621.

10. Yahyapour R., Motevaseli E., Rezaeyan A., Abdollahi H., Far-hoodB., Cheki M., NajafiM., Villa V Mechanisms of Radiation Bystander and Non-Targeted Effects: Implications to Radiation Carcinogenesis and Radiotherapy. Curr Radiopharm. 2018; 11(1): 3445. doi: 10.2174/1874471011666171229123130.

11. Mutschelknaus L., Azimzadeh O., Heider T., WinklerK., VetterM., Kell R., Tapio S., Merl-Pham J., Huber S.M., EdalatL., Radulovic V, An-astasovN., AtkinsonM.J., Moertl S. Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Sci Rep. 2017 Sep 29; 7(1): 12423. doi: 10.1038/s41598-017-12403-6.

12. Koole K., Brunen D., van Kempen PM., Noorlag R., de Bree R., Lieftink C., van Es.R.J., Bernards R., Willems S.M. FGFR1 Is a Potential Prognostic Biomarker and Therapeutic Target in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res. 2016 Aug 1; 22(15): 388493. doi: 10.1158/1078-0432.CCR-15-1874.

13. Gouaze-Andersson V, Delmas C., TaurandM., Martinez-Gala J., EvrardS.,MazoyerS., Toulas C., Cohen-Jonathan-MoyalE. FGFR1 Induces Glioblastoma Radioresistance through the PLCgamma/Hif1alpha Pathway. Cancer research. 2016; 76: 3036-3044. doi: 10.1158/0008-5472.

14. Yu Q., Li P., Weng M., Wu S., Zhang Y, Chen X., Zhang Q., Shen G., DingX., Fu S. Nano-Vesicles are a Potential Tool to Monitor Therapeutic Efficacy of Carbon Ion Radiotherapy in Prostate Cancer. J Biomed Nanotechnol. 2018 Jan 1; 14(1): 168178. doi: 10.1166/jbn.2018.2503.

15. Yang Y., Chen Y., Zhang F, Zhao Q., Zhong H. Increased antitumour activity by exosomes derived from doxorubicin-treated tumour cells via heat stress. Int J Hyperthermia. 2015; 31(5): 498506. doi: 10.3109/02656736.2015.1036384.

16. Chen T., Guo J., YangM., Zhu X., Cao X. Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raftdependent pathway and act as efficient tumor vaccine. J Immunol. 2011 Feb 15; 186(4): 221928. doi: 10.4049/jimmunoU002991.

17. Zhong H., Yang Y., Ma S., Xiu F., Cai Z., Zhao H., Du L. Induction of a tumour-specific CTL response by exosomes isolated from heat-treated malignant ascites of gastric cancer patients. Int J Hyperthermia. 2011; 27(6): 60411. doi: 10.3109/02656736.2011.564598.

18. Altanerova U., BabincovaM., BabinecP., BenejovaK., Jakubecho-va J., Altanerova V, Zduriencikova M., Repiska V, Altaner C. Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia. Int J Nanomedicine. 2017 Oct 27; 12: 79237936. doi: 10.2147/IJN.S145096.

19. Guo D., Chen Y., Wang S., Yu L., Shen Y., Zhong H., Yang Y. Exo-somes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to Th17 cells via IL-6. Immunology. 2018 May; 154(1): 132143. doi: 10.1111/imm.12874.

20. Yu Z., Geng J., Zhang M., Zhou Y., Fan Q., Chen J. Treatment of osteosarcoma with microwave thermal ablation to induce immunogenic cell death. Oncotarget. 2014 Aug 15; 5(15): 652639. doi: 10.18632/on-cotarget.2310.

21. Tugutova E.A., Tamkovich S.N., Patysheva M.R., Afanasev S.G., TsydenovaA.A., Grigor’evaA.E., KolegovaE.S., Kondakova I.V., Yunuso-va N.V. Relation between Tetraspanin- Associated and Tetraspanin- NonAssociated Exosomal Proteases and Metabolic Syndrome in Colorectal Cancer Patients. Asian Pac J Cancer Prev. 2019 Mar 26; 20(3): 809815. doi: 10.31557/APJCP2019.20.3.809.

22. MatthewsA.L., NoyP.J., Reyat J.C. Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: The emerging role of tetraspanins and rhomboids. Platelets. 2017; 28(4): 333-341. doi: 10.1080/09537104.2016.1184751.

23. Gutwein P., Stoeck A., Riedle S., GastD., Runz S., Condon T.P., MarmeA., PhongM.C., Linderkamp O., SkorokhodA., AltevogtP. Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin. Cancer Res. 2005; 11(7): 2492501. doi: 10.1158/1078-0432.CCR-04-1688.

24. Buzas E.I., Toth E.A., Sodar B.W., Szabo-Taylor K.E. Molecular interactions at the surface of extracellular vesicles. Semin Immunopathol. 2018 Sep; 40(5): 453464. doi: 10.1007/s00281-018-0682-0.

25. Tamkovich S., Yunusova N., Tugutova E., Somov A., Proskura K., Kolomiets L., Stakheyeva M., Grigor ’eva E., Laktionov P, Kondakova I. Protease Cargo in Circulating Exosomes of Breast Cancer and Ovarian Cancer Patients. Semin Immunopathol. 2018 Sep; 40(5): 453464. doi: 10.1007/s00281-018-0682-0.

26. Shimoda M., Khokha R. Metalloproteinases in extracellular vesicles. Biochim Biophys Acta Mol Cell Res. 2017 Nov; 1864(11 Pt A): 19892000. doi: 10.1016/j.bbamcr.2017.05.027.

27. Keller S., KonigA.K., MarmeF., Runz S., WolterinkS., KoensgenD., Mustea A., Sehouli J., Altevogt P. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett. 2009; 278(1): 7381. doi: 10.1016/j.canlet.2008.12.028.

28. Melzer C., Rehn V, Yang Y., Bahre H., von der Ohe J., Hass R. Taxol-Loaded MSC-Derived Exosomes Provide a Therapeutic Vehicle to Target Metastatic Breast Cancer and Other Carcinoma Cells. Cancers (Basel). 2019 Jun 9; 11(6): pii: E798. doi: 10.3390/cancers11060798.

29. Kalinina N.I., Sysoeva VY., Rubina K.A., Parfenova Y.V., Tka-chuk V.A. Mesenchymal stem cells in tissue growth and repair. Acta Naturae. 2011 Oct; 3(4): 307.

30. Zuo R., Liu M., Wang Y., Li J., Wang W., Wu J., Sun C., Li B., Wang Z., Lan W., Zhang C., Shi C., Zhou Y. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/p-catenin signaling. Stem Cell Res Ther. 2019 Jan 15; 10(1): 30. doi: 10.1186/s13287-018-1121-9.

31. Zhou Y, XuH.,Xu W, WangB., WuH., Tao Y, ZhangB., WangM., Mao F., Yan Y., Gao S., Gu H., Zhu W., Qian H. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidativestress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 2013 Apr 25; 4(2): 34. doi: 10.1186/scrt194.

32. de Araujo Farias V, O'Valle F., Serrano-Saenz S., Anderson P, Andres E., Lopez-Penalver J., Tovar I., Nieto A., Santos A., Martin F., Exposito J., Oliver F.J., de Almodovar J.M.R. Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci. Mol Cancer. 2018 Aug 15; 17(1): 122. doi: 10.1186/s12943-018-0867-0.

33. Durak-KozicaM.,Baster Z., KubatE., StqpiehK. 3D visualization of extracellular vesicle uptake by endothelial cells. Cell Mol Biol Lett. 2018 Dec 17; 23: 57. doi: 10.1186/s11658-018-0123-z.

34. Mastoridis S., Minani Bertolino G.M., Whitehouse G., Dazzi F., Sanchez-Fueyo A., Marc Martinez-Llordella M. Multiparametric analysis of circulating exosomes and other small extracellular vesicles by advanced imaging flow cytometry. Front Immunol. 2018; 9: 1583. doi: 10.3389/fimmu.2018.01583

35. Tamkovich S.N., Yunusova N.V, Stakheeva M.N., Somov A.K., Frolova A.Y., Kirushina N.A., Afanasyev S.G., Grigoryeva A.E., Laktionov PP, Kondakova I.V. Isolation and characterization of exosomes from blood plasma of breast cancer and colorectal cancer patients. Biochemistry (Moscow), Suppl.Series B: Biomedical Chemistry. 2017; 11(3): 291-295. doi: 10.1134/S1990750817030106.

36. Yunusova N.V, Tamkovich S.N., Stakheeva M.N., Afanasev S.G., Frolova A.Y., Kondakova I.V. The characterization of exosome from blood plasma of patients with colorectal cancer. AIP Conference Proceedings, 020070 (2016).


Для цитирования:


Юнусова Н.В., Федоров А.А., Старцева Ж.А., Yeon J.H. Абскопальный эффект радиотерапии и гипертермии: роль внеклеточных везикул. Сибирский онкологический журнал. 2020;19(2):108-115. https://doi.org/10.21294/1814-4861-2020-19-2-108-115

For citation:


Yunusova N.V., Fedorov A.A., Startseva Z.A., Yeon J.H. Abscopal effect of radiotherapy and hyperthermia: role of exosomes. Siberian journal of oncology. 2020;19(2):108-115. https://doi.org/10.21294/1814-4861-2020-19-2-108-115

Просмотров: 863


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)