GENETIC POLYMORPHISM OF RETROPERITONEAL MYXOID LIPOSARCOMA
https://doi.org/10.21294/1814-4861-2020-19-3-89-96
Abstract
Objective: to detect new molecular genetic markers and therapeutic targets in retroperitoneal myxoid liposarcoma.
Material and Methods. DNA samples isolated from tumor tissue and obtained from formalinfixed paraffin-embedded (FFPE) slides were used. DNA was extracted using the GeneRead DNA FFPE Kit (50) (Qiagen). High-throughput next generation sequencing (NGS) using the GeneReader Actionable Insights Tumor Panel (GRTP – 101X) on the QCI Analyzer version 1.1 platform (Qiagen) was used for molecular genetic analysis of 12 genes involved in carcinogenesis: KRAS, NRAS, KIT, BRAF, PDGFRA, ALK, EGFR, ERBB2, PIK3CA, ERBB3, ESR1, RAF1.
Results. Targeted sequencing of retroperitoneal extra-organ myxoid liposarcoma demonstrated genetic heterogeneity. Our study was the first to describe mutations and polymorphic variants in genes, such as EGFR, PIK3CA, ALK, BRAF, ERBB2 / 3, ESR1, KIT, PDGFRA in myxoid liposarcoma.
Conclusion. This study demonstrated a wide range of molecular genetic rearrangements in retroperitoneal extra-organ myxoid liposarcoma. Synonymous mutations in the EGFR (Q787Q) and PDGFRA (P567P) genes were detected in all cases (100 %). Missense mutations in the ERBB2 gene (P1170A) and synonymous mutations in the ALK (G845G) and BRAF genes were identified in 75 % of cases. Missense mutation in the PIK3CA gene (I391M) was detected in 25 % of cases. The gene polymorphisms presented in this paper are most likely involved in the carcinogenesis of retroperitoneal myxoid liposarcoma. Further studies with larger patient groups and multivariate analysis of long-term treatment results are required.
About the Authors
A. Yu. VolkovRussian Federation
Postgraduate, Thoracic and Abdominal Department,
23, Kashirskoye Shosse, 115478, Moscow
V. M. Safronova
Russian Federation
Junior Researcher of the Laboratory of Clinical Oncogenetics, Department of Morphological and Molecular Genetic Diagnosis of Tumors,
23, Kashirskoye Shosse, 115478, Moscow
S. N. Nered
Russian Federation
MD, DSc, Leading Researcher, Thoracic and Abdominal Department,
23, Kashirskoye Shosse, 115478, Moscow
L. N. Lyubchenko
Russian Federation
Head of the Laboratory of Clinical Oncogenetics of the Department of Morphological and Molecular Genetic Diagnosis of Tumors, 23, Kashirskoye Shosse, 115478, Moscow;
MD, DSc, Associate Professor, Institute of Clinical Medicine, 8/2, Trubetskaya str., 119991
I. S. Stilidi
Russian Federation
MD, DSc, Professor, Corresponding Member of the Russian Academy of Sciences, Director of N.N. Blokhin National Medical Research Centre of Oncology of the Health Ministry of Russia,
Head of Thoracic and Abdominal Department,
23, Kashirskoye Shosse, 115478, Moscow
References
1. Kaprin A.D., Starinsky V.V., Petrova G.V. The status of cancer care for the population of Russia in 2017. Moscow, 2018. 236 p. (in Russian).
2. Liles J.S., Tzeng C.W., Short J.J., Kulesza P., Heslin M.J. Retroperitoneal and intra-abdominal sarcoma. Curr Probl Surg. 2009 Jun; 46(6): 445–503. doi: 10.1067/j.cpsurg.2009.01.004.
3. Thomas J.M. Retroperitoneal sarcoma. Br J Surg. 2007 Sep; 94(9): 1057–8. doi: 10.1002/bjs.5967.
4. Dalal K.M., Kattan M.W., Antonescu C.R., Brennan M.F., Singer S. Subtype specific prognostic nomogram for patients with primary liposarcoma of the retroperitoneum, extremity, ortrunk. Ann Surg. 2006 Sep; 244(3): 381–91. doi: 10.1097/01.sla.0000234795.98607.00.
5. Fletcher C.D.M., Bridge J.A., Hogendoorn P., Mertens F. WHO Classification of Tumours of Soft Tissue and Bone. Geneva, 2013. 468 p.
6. Lindberg M.R. Diagnostic Pathology: Soft Tissue Tumors. 2nd edition. Сanada, 2015. 800 p.
7. Evans H.L. Liposarcoma: a study of 55 cases with reassessment of its classification. Am J Surg Pathol. 1979 Dec; 3(6): 507–23. doi: 10.1097/00000478-197912000-00004.
8. Aman P., Ron D., Mandahl N., Fioretos T., Heim S., Arheden K., Willén H., Rydholm A., Mitelman F. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12; 16)(q 13;p 11). Genes Chromosomes Cancer. 1992 Nov; 5(4): 278–85. doi: 10.1002/gcc.2870050403.
9. Knight J.C., Renwick P.J., Dal Cin P., Van den Berghe H., Fletcher C.D. Translocation t(12; 16)(q 13;p11) in myxoid liposarcoma and round cell liposarcoma: molecular and cytogenetic analysis. Cancer Res. 1995; 55: 24–7.
10. Bonvalot S., Rivoire M., Castaing M., Stoeckle E., Le Cesne A., Blay J.Y., Laplanche A. Primary retroperitoneal sarcomas: a multivariate analysis of surgical factors associated with local control. J Clin Oncol. 2009 Jan 1; 27(1): 31–7. doi: 10.1200/JCO.2008.18.0802.
11. Eilber F.C., Eilber F.R., Eckardt J., Rosen G., Riedel E., Maki R.G., Brennan M.F., Singer S. The impact of chemotherapy on the survival of patients with high-grade primary extremity liposarcoma. Ann Surg. 2004 Oct; 240(4): 686–95. doi: 10.1097/01.sla.0000141710.74073.0d.
12. Gronchi A., Lo Vullo S., Fiore M., Mussi C., Stacchiotti S., Collini P., Lozza L., Pennacchioli E., Mariani L., Casali P.G. Aggressive surgical policies in a retrospectively reviewed single-institution case series of retroperitoneal soft tissue sarcoma patients. J Clin Oncol. 2009 Jan 1; 27(1): 24–30. doi: 10.1200/JCO.2008.17.8871.
13. Pervaiz N., Colterjohn N., Farrokhyar F., Tozer R., Figueredo A., Ghert M. A systematic meta-analysis of randomized controlled trials of adjuvant chemotherapy for localized resectable soft-tissue sarcoma. Cancer. 2008 Aug 1; 113(3): 573–81. doi: 10.1002/cncr.23592.
14. Woll P.J., Reichardt P., Le Cesne A., Bonvalot S., Azzarelli A., Hoekstra H.J., Leahy M., Van Coevorden F., Verweij J., Hogendoorn P.C., Ouali M., Marreaud S., Bramwell V.H., Hohenberger P.; EORTC Soft Tissue and Bone Sarcoma Group and the NCIC Clinical Trials Group Sarcoma Disease Site Committee. Adjuvant chemotherapy with doxorubicin, ifosfamide, and lenograstim for resected soft-tissue sarcoma (EORTC 62931): a multicentre randomised controlled trial. Lancet Oncol. 2012 Oct; 13(10): 1045–54. doi: 10.1016/S1470-2045(12)70346-7.
15. Krikelis D., Judson I. Role of chemotherapy in the management of soft tissue sarcomas. Expert Rev Anticancer Ther. 2010 Feb; 10(2): 249–60. doi: 10.1586/era.09.176.
16. Jones R.L., Fisher C., Al-Muderis O., Judson I.R. Differential sensitivity of liposarcoma subtypes to chemotherapy. Eur J Cancer. 2005 Dec; 41(18): 2853–60. doi:10.1016/j.ejca.2005.07.023.
17. Li C., Shen Y., Ren Y., Liu W., Li M., Liang W., Liu C., Li F. Oncogene Mutation Profiling Reveals Poor Prognosis Associated with FGFR1/3 Mutation in Liposarcoma. Hum Pathol. 2016 Sep; 55: 143–50. doi: 10.1016/j.humpath.2016.05.006.
18. Movva S., Wen W., Chen W., Millis S.Z., Gatalica Z., Reddy S., von Mehren M., Van Tine B.A. Multi-platform profiling of over 2000 sarcomas: Identification of biomarkers and novel therapeutic targets. Oncotarget. 2015 May 20; 6(14): 12234–47. doi: 10.18632/oncotarget.3498.
19. Barretina J., Taylor B.S., Banerji S., Ramos A.H., Lagos-Quintana M., Decarolis P.L., Shah K., Socci N.D., Weir B.A., Ho A., Chiang D.Y., Reva B., Mermel C.H., Getz G., Antipin Y., Beroukhim R., Major J.E., Hatton C., Nicoletti R., Hanna M., Sharpe T., Fennell T.J., Cibulskis K., Onofrio R.C., Saito T., Shukla N., Lau C., Nelander S., Silver S.J., Sougnez C., Viale A., Winckler W., Maki R.G., Garraway L.A., Lash A., Greulich H., Root D.E., Sellers W.R., Schwartz G.K., Antonescu C.R., Lander E.S., Varmus H.E., Ladanyi M., Sander C., Meyerson M., Singer S. Subtype-specific genomic alterations define new targets for soft tissue sarcoma therapy. Nat Genet. 2010 Aug; 42(8): 715–21. doi: 10.1038/ng.619.
20. Woodburn J.R. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther. 1999 May-Jun; 82(2–3): 241–50. doi: 10.1016/s0163-7258(98)00045-x.
21. Koh Y.W., Kim H.J., Kwon H.Y., Han J.H., Lee C.K., Lee M.S., Kim C.J., Baek M.J., Jeong D. Q787Q EGFR Polymorphism as a Prognostic Factor for Lung Squamous Cell Carcinoma. Oncology. 2016; 90(5): 289–98. doi: 10.1159/000444495.
22. Sasaki H., Endo K., Takada M., Kawahara M., Tanaka H., Kitahara N., Matsumura A., Iuchi K., Kawaguchi T., Okuda K., Kawano O., Yukiue H., Yokoyama T., Yano M., Fujii Y. EGFR polymorphism of the kinase domain in Japanese lung cancer. J Surg Res. 2008 Aug; 148(2): 260–3. doi: 10.1016/j.jss.2007.09.001.
23. Ma F., Sun T., Shi Y., Yu D., Tan W., Yang M., Wu C., Chu D., Sun Y., Xu B., Lin D. Polymorphisms of EGFR predict clinical outcome in advanced non-small-cell lung cancer patients treated with Gefitinib. Lung Cancer. 2009 Oct; 66(1): 114–9. doi: 10.1016/j.lungcan.2008.12.025.
24. Wang W.S., Chen P.M., Chiou T.J., Liu J.H., Lin J.K., Lin T.C., Wang H.S., Su Y. Epidermal growth factor receptor R497K polymorphism is a favorable prognostic factor for patients with colorectal carcinoma. Clin Cancer Res. 2007 Jun 15; 13(12): 3597–604. doi: 10.1158/1078-0432.CCR-06-2601.
25. Toomey S., Madden S.F., Furney S.J., Fan Y., McCormack M., Stapleton C., Cremona M., Cavalleri G.L., Milewska M., Elster N., Carr A., Fay J., Kay E.W., Kennedy S., Crown J., Gallagher W.M., Hennessy B.T., Eustace A.J. The impact of ERBB-family germline single nucleotide polymorphisms on survival response to adjuvant trastuzumab treatment in HER2-positive breast cancer. Oncotarget. 2016 Nov 15; 7(46): 75518–75525. doi: 10.18632/oncotarget.
26. Bashir N.A., Ragab E.S., Khabour O.F., Khassawneh B.Y., Alfaqih M.A., Momani J.A. The Association between Epidermal Growth Factor Receptor (EGFR) Gene Polymorphisms and Lung Cancer Risk. Biomolecules. 2018 Jul 13; 8(3). pii: E53. doi: 10.3390/biom8030053.
27. Zhang J., Zhan Z., Wu J., Zhang C., Yang Y., Tong S., Sun Z., Qin L., Yang X., Dong W. Association among polymorphisms in EGFR gene exons, lifestyle and risk of gastric cancer with gender differences in Chinese Han subjects. PLoS One. 2013; 8(3): e59254. doi: 10.1371/journal.pone.0059254.
28. Fung C., Zhou P., Joyce S., Trent K., Yuan J.M., Grandis J.R., Weissfeld J.L., Romkes M., Weeks D.E., Egloff A.M. Identification of epidermal growth factor receptor (EGFR) genetic variants that modify risk for head and neck squamous cell carcinoma. Cancer Lett. 2015 Feb 28; 357(2): 549–56. doi: 10.1016/j.canlet.2014.12.008.
29. Harari D., Yarden Y. Molecular mechanisms underlying ErbB2/ HER2 action in breast cancer. Oncogene. 2000; 19(53): 6102–14. doi: 10.1038/sj.onc.1203973.
30. AbdRaboh N.R., Shehata H.H., Ahmed M.B., Bayoumi F.A. HER1 R497K and HER2 I655V polymorphisms are linked to development of breast cancer. Dis Markers. 2013; 34(6): 407–17. doi: 10.3233/DMA130989.
31. Tao W., Wang C., Han R., Jiang H. HER2 Codon 655 polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2009; 114(2): 371–6. doi: 10.1007/s10549-008-0010-9.
32. Lu S., Wang Z., Liu H., Hao X. HER2 Ile655Val polymorphism contributes to breast cancer risk: evidence from 27 case-control studies. Breast Cancer Res Treat. 2010 Dec; 124(3): 771–8. doi: 10.1007/s10549-010-0886-z.
33. Xie D., Shu X.O., Deng Z., Wen W.Q., Creek K.E., Dai Q., Gao Y.T., Jin F., Zheng W. Population-based, casecontrol study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst. 2000 Mar 1; 92(5): 412–7. doi: 10.1093/jnci/92.5.412.
34. Kruszyna Ł., Lianeri M., Roszak A., Jagodziński P.P. HER2 codon 655 polymorphism is associated with advanced uterine cervical carcinoma. Clin Biochem. 2010 Apr; 43(6): 545–8. doi: 10.1016/j.clinbiochem.2009.12.016.
35. Jo U.H., Han S.G., Seo J.H., Park K.H., Lee J.W., Lee H.J., Ryu J.S., Kim Y.H. The genetic polymorphisms of HER-2 and the risk of lung cancer in a Korean population. BMC Cancer. 2008 Dec 4; 8: 359. doi: 10.1186/1471-2407-8-359.
36. Xin D.J., Shen G.D., Song J. Single nucleotide polymorphisms of HER2 related to osteosarcoma susceptibility. Int J Clin Exp Pathol. 2015 Aug; 8(8): 9494–9.
37. Pillai R.N., Ramalingam S.S. The Biology and Clinical Features of Non-small Cell Lung Cancers with EML4-ALK Translocation. Curr Oncol Rep. 2012 Apr; 14(2): 105–10. doi: 10.1007/s11912-012-0213-4.
38. Sithanandam G., Kolch W., Duh F.M., Rapp U.R. Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene. 1990 Dec; 5(12): 1775–80.
39. Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C., Shipley J., Hargrave D., Pritchard-Jones K., Maitland N., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A., Nicholson A., Ho J.W., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A. Mutations of the BRAF gene in human cancer. Nature. 2002 Jun 27; 417(6892): 949–54. doi: 10.1038/nature00766.
40. Lih C.J., Cohen S.N., Wang C., Lin-Chao S. The platelet-derived growth factor alpha-receptor is encoded by a growth-arrest-specific (gas) gene. Proc Natl Acad Sci U S A. 1996 May 14; 93(10): 4617–22. doi: 10.1073/pnas.93.10.4617.
Review
For citations:
Volkov A.Yu., Safronova V.M., Nered S.N., Lyubchenko L.N., Stilidi I.S. GENETIC POLYMORPHISM OF RETROPERITONEAL MYXOID LIPOSARCOMA. Siberian journal of oncology. 2020;19(3):89-96. (In Russ.) https://doi.org/10.21294/1814-4861-2020-19-3-89-96