Preview

Сибирский онкологический журнал

Расширенный поиск

РОЛЬ ФАКТОРОВ ТРАНСКРИПЦИИ GATA3, FOXA1, ELF5 В ПАТОГЕНЕЗЕ И ПРОГНОЗЕ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ

https://doi.org/10.21294/1814-4861-2020-19-3-146-155

Полный текст:

Аннотация

Цель исследования – обобщение имеющихся данных о роли и значении факторов транскрипции GATA3, FOXA1 и ELF5 в патогенезе, прогрессии и резистентности к гормонотерапии рака молочной железы.

Материал и методы. Проведен поиск доступных зарубежных литературных источников в системах Medline и PubMed, содержащих современные сведения относительно структуры, функциональных показателей и участия исследуемых факторов транскрипции в механизмах патогенеза при раке молочной железы. По теме исследования было проанализировано более 180 источников литературы, из которых 76 были включены в обзор.

Результаты. Настоящий обзор показывает актуальность проведения молекулярно-генетических исследований в отношении транскрипционных факторов с последующим сопоставлением полученных результатов с различными клинико-морфологическими характеристиками карциномы молочной железы, демонстрирует противоречивость имеющихся данных в отношении их клинической значимости при оценке прогноза заболевания и чувствительности опухоли к гормонотерапии.

Заключение. Изучение параметров экспрессии факторов транскрипции GATA3, FOXA1 и ELF5, а также их взаимосвязи с механизмами опухолевой прогрессии позволит повысить информативность иммуноморфологического исследования, с наибольшей долей вероятности определять эффективность гормонотерапии, и, следовательно, планировать адекватную тактику лечения и прогнозировать исход заболевания при раке молочной железы. 

Об авторах

Д. В. Васильченко
ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России
Россия

ассистент кафедры патологической анатомии,

г. Томск, 634050, Московский тракт, 2



Н. В. Крахмаль
ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России
Россия

кандидат медицинских наук, доцент кафедры патологической анатомии,

г. Томск, 634050, Московский тракт, 2



С. В. Вторушин
ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России
Россия

доктор медицинских наук, доцент, профессор кафедры патологической анатомии,

г. Томск, 634050, Московский тракт, 2



М. В. Завьялова
ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России
Россия

доктор медицинских наук, профессор, заведующая кафедрой патологической анатомии,

г. Томск, 634050, Московский тракт, 2



Список литературы

1. Simon I., Barnett J., Hannett N., Harbison C.T., Rinaldi N.J., Volkert T.L., Wyrick J.J., Zeitlinger J., Gifford D.K., Jaakkola T.S., Young R.A. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell. 2001 Sep 21; 106(6): 697–708. doi: 10.1016/s0092-8674(01)00494-9.

2. Accili D., Arden K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004 May 14; 117(4): 421–6. doi: 10.1016/s0092-8674(04)00452-0.

3. Vaquerizas J.M., Kummerfeld S.K., Teichmann S.A., Luscombe N.M. A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 2009 Apr; 10(4): 252–63. doi: 10.1038/nrg2538.

4. Singh M., Ding Y., Zhang L.Y., Song D., Gong Y., Adams S., Ross D.S., Wang J.H., Grover S., Doval D.C., Shao C., He Z.L., Chang V., Chin W.W., Deng F.M., Singh B., Zhang D., Xu R.L., Lee P. Distinct breast cancer subtypes in women with early-onset disease across races. Am J Cancer Res. 2014; 4(4): 337–52.

5. Lambert S.A., Jolma A., Campitelli L.F., Das P.K., Yin Y., Albu M., Chen X., Taipale J., Hughes T.R., Weirauch M.T. The Human Transcription Factors. Cell. 2018 Feb 8; 172(4): 650–665. doi: 10.1016/j.cell.2018.01.029.

6. Boyadjiev S.A., Jabs E.W. Online Mendelian Inheritance in Man (OMIM) as a knowledgebase for human developmental disorders. Clin Genet. 2000 Apr; 57(4): 253–66. doi: 10.1034/j.1399-0004.2000.570403.x.

7. Furney S.J., Higgins D.G., Ouzounis C.A., López-Bigas N. Structural and functional properties of genes involved in human cancer. BMC Genomics. 2006 Jan 11; 7: 3. doi: 10.1186/1471-2164-7-3.

8. Papavassiliou K.A., Papavassiliou A.G. Transcription factor drug targets. J. Cell Biochem. 2016 May; 117(12): 2693–2696. doi: 10.1002/jcb.25605.

9. Hagenbuchner J., Ausserlechner M.J. Targeting transcription factors by small compounds Current strategies and future implications. Biochem Pharmacol. 2016 May; 107: 1–13. doi: 10.1016/j.bcp.2015.12.006.

10. Liu H., Shi J., Wilkerson M.L., Lin F. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol. 2012 Jul; 138(1): 57–64. doi: 10.1309/AJCP5UAFMSA9ZQBZ.

11. Braxton D.R., Cohen C., Siddiqui M.T. Utility of GATA3 immunohistochemistry for diagnosis of metastatic breast carcinoma in cytology specimens. Diagn Cytopathol. 2015 Aug; 43(4): 271–7. doi: 10.1002/dc.23206.

12. Zheng R., Blobel G.A. GATA Transcription Factors and Cancer. Genes Cancer. 2010 Dec; 1(12): 1178–1188. doi: 10.1177/1947601911404223.

13. Lentjes M.H.F.M., Niessen H.E.C., Akiyama Y., de Bruïne A.P., Melotte V., van Engeland M. The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med. 2016 Mar; 18: e3. doi: 10.1017/erm.2016.2.

14. Miettinen M., McCue P.A., Sarlomo-Rikala M., Rys J., Czapiewski P., Wazny K., Langfort R., Waloszczyk P., Biernat W., Lasota J., Wang Z. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014 Jan; 38(1): 13–22. doi: 10.1097/PAS.0b013e3182a0218f.

15. Sellheyer K., Krahl D. Expression pattern of GATA-3 in embryonic and fetal human skin suggests a role in epidermal and follicular morphogenesis. J Cutan Pathol. 2010 Mar; 37(3): 357–361. doi: 10.1111/j.1600-0560.2009.01416.x.

16. Theodorou V., Stark R., Menon S., Carroll J.S. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. Genome Res. 2013 Jan; 23(1): 12–22. doi: 10.1101/gr.139469.112.

17. Gustin J.P., Miller J., Farag M., Rosen D.M., Thomas M., Scharpf R.B., Lauring J. GATA3 frameshift mutation promotes tumor growth in human luminal breast cancer cells and induces transcriptional changes seen in primary GATA3 mutant breast cancers. Oncotarget. 2017 Oct 20; 8(61): 103415–427. doi: 10.18632/oncotarget.21910.

18. Emmanuel N., Lofgren K.A., Peterson E.A., Meier D.R., Jung E.H., Kenny P.A. Mutant GATA3 Actively Promotes the Growth of Normal and Malignant Mammary Cells. Anticancer Res. 2018; 38(8): 4435–41. doi: 10.21873/anticanres.12745.

19. Fang S.H., Chen Y., Weigel R.J. GATA-3 as a marker of hormone response in breast cancer. J Surg Res. 2009 Dec; 157(2): 290–5. doi: 10.1016/j.jss.2008.07.015.

20. Izzo F., Mercogliano F., Venturutti L., Tkach M., Inurrigarro G., Schillaci R., Cerchietti L., Elizalde V.P., Proietti C. Progesterone receptor activation down regulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res. 2014 Dec; 16: 491. doi: 10.1186/s13058-014-0491-x.

21. Yan W., Cao Q.J., Arenas R.B., Bentley B., Shao R. GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem. 2010 Apr; 285(18): 14042–51. doi: 10.1074/jbc.M110.105262.

22. Si W., Huang W., Zheng Y., Yang Y., Liu X., Shan L., Zhou X., Wang Y., Su D., Gao J., Yan R., Han X., Li W., He L., Shi L., Xuan C., Liang J., Sun L., Wang Y., Shang Y. Dysfunction of the reciprocal feedback loop between GATA3- and ZEB2-nucleated repression programs contributes to breast cancer metastasis. Cancer Cell. 2015 Jun; 27(6): 822–836. doi: 10.1016/j.ccell.2015.04.011.

23. Yu W., Huang W., Yang Y., Qiu R., Zeng Y., Hou Y., Sun G., Shi H., Leng S., Feng D., Chen Y., Wang S., Teng X., Yu H., Wang Y. GATA3 recruits UTX for gene transcriptional activation to suppress metastasis of breast cancer. Cell Death Dis. 2019 Nov 4; 10(11): 832. doi: 10.1038/s41419-019-2062-7.

24. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490(7418): 61–70. doi: 10.1038/nature11412.

25. Pereira B., Chin S.F., Rueda O.M., Vollan H.K., Provenzano E., Bardwell H.A., Pugh M., Jones L., Russell R., Sammut S.J., Tsui D.W., Liu B., Dawson S.J., Abraham J., Northen H., Peden J.F., Mukherjee A., Turashvili G., Green A.R., McKinney S., Oloumi A., Shah S., Rosenfeld N., Murphy L., Bentley D.R., Ellis I.O., Purushotham A., Pinder S.E., BørresenDale A.L., Earl H.M., Pharoah P.D., Ross M.T., Aparicio S., Caldas C. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016 May 10; 7: 11479. doi: 10.1038/ncomms11479.

26. Mair B., Konopka T., Kerzendorfer C., Sleiman K., Salic S., Serra V., Muellner M.K., Theodorou V., Nijman S.M. Gain- and Loss-ofFunction Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS Genet. 2016 Sep 2; 12(9): e1006279. doi: 10.1371/journal.pgen.1006279.

27. Takaku M., Grimm S.A., Roberts J.D., Chrysovergis K., Bennett B.D., Myers P., Perera L., Tucker C.J., Perou C.M., Wade P.A. GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun. 2018 Mar 13; 9(1): 1059. doi: 10.1038/s41467-018-03478-4.

28. Gonzalez R.S., Wang J., Kraus T., Sullivan H., Adams A.L., Cohen C. GATA-3 expression in male and female breast cancers: comparison of clinicopathologic parameters and prognostic relevance. Hum Pathol. 2013 Jun; 44(6): 1065–70. doi: 10.1016/j.humpath.2012.09.010.

29. Mehra R., Varambally S., Ding L., Shen R., Sabel M.S., Ghosh D., Chinnaiyan A.M., Kleer C.G. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res. 2005 Dec 15; 65(24): 11259–64. doi: 10.1158/0008-5472.CAN-05-2495.

30. Viedma-Rodríguez R., Baiza-Gutman L., Salamanca-Gómez F., Diaz-Zaragoza M., Martínez-Hernández G., Ruiz Esparza-Garrido R., Velázquez-Flores M.A., Arenas-Aranda D. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review). Oncol Rep. 2014 Jul; 32(1): 3–15. doi: 10.3892/or.2014.3190.

31. Jiang Y.Z., Yu K.D., Zuo W.J., Peng W.T., Shao Z.M. GATA3 mutations define a unique subtype of luminal-like breast cancer with improved survival. Cancer. 2014 May 1; 120(9): 1329–37. doi: 10.1002/cncr.28566.

32. Ellis M.J., Ding L., Shen D., Luo J., Suman V.J., Wallis J.W., Van Tine B.A., Hoog J., Goiffon R.J., Goldstein T.C., Ng S., Lin L., Crowder R., Snider J., Ballman K., Weber J., Chen K., Koboldt D.C., Kandoth C., Schierding W.S., McMichael J.F., Miller C.A., Lu C., Harris C.C., McLellan M.D., Wendl M.C., DeSchryver K., Allred D.C., Esserman L., Unzeitig G., Margenthaler J., Babiera G.V., Marcom P.K., Guenther J.M., Leitch M., Hunt K., Olson J., Tao Y., Maher C.A., Fulton L.L., Fulton R.S., Harrison M., Oberkfell B., Du F., Demeter R., Vickery T.L., Elhammali A., Piwnica-Worms H., McDonald S., Watson M., Dooling D.J., Ota D., Chang L.W., Bose R., Ley T.J., Piwnica-Worms D., Stuart J.M., Wilson R.K., Mardis E.R. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012 Jun 10; 486(7403): 353–60. doi: 10.1038/nature11143.

33. Sangoi A.R., Shrestha B., Yang G., Mego O., Beck A.H. The Novel Marker GATA3 is Significantly More Sensitive Than Traditional Markers Mammaglobin and GCDFP15 for Identifying Breast Cancer in Surgical and Cytology Specimens of Metastatic and Matched Primary Tumors. Appl Immunohistochem Mol Morphol. 2016 Apr; 24(4): 229–37. doi: 10.1097/PAI.0000000000000186.

34. Laurent E., Begueret H., Bonhomme B., Veillon R., Thumerel M., Velasco V., Brouste V., Hoppe S., Fournier M., Grellety T., MacGrogan G. SOX10, GATA3, GCDFP15, Androgen Receptor, and Mammaglobin for the Differential Diagnosis Between Triple-negative Breast Cancer and TTF1-negative Lung Adenocarcinoma. Am J Surg Pathol. 2019 Mar; 43(3): 293–302. doi: 10.1097/PAS.0000000000001216.

35. Hannenhalli S., Kaestner K.H. The evolution of Fox genes and their role in development and disease. Nat Rev Genet. 2009 Apr; 10(4): 233–40. doi: 10.1038/nrg2523.

36. Bernardo G.M., Keri R.A. FOXA1: a transcription factor with parallel functions in development and cancer. Biosci Rep. 2012; 32(2): 113–30. doi: 10.1042/BSR20110046.

37. Robinson J.L., Holmes K.A., Carroll J.S. FOXA1 mutations in hormone-dependent cancers. Front Oncol. 2013; 3: 20. doi: 10.3389/fonc.2013.00020.

38. Zhang G., Zhao Y., Liu Y., Kao L.P., Wang X., Skerry B., Li Z. FOXA1 defines cancer cell specificity. Sci Adv. 2016 Mar; 2(3): e1501473. doi: 10.1126/sciadv.1501473.

39. Carroll J.S. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer. Eur. J. Endocrinol. 2016 Jul; 75(1): 41–9. doi: 10.1530/EJE-16-0124.

40. Hurtado A., Holmes K.A., Ross-Innes C.S., Schmidt D., Carroll J.S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011 Jan; 43(1): 27–33. doi: 10.1038/ng.730.

41. Barbieri C.E., Baca S.C., Lawrence M.S., Demichelis F., Blattner M., Theurillat J.P., White T.A., Stojanov P., Van Allen E., Stransky N., Nickerson E., Chae S.S., Boysen G., Auclair D., Onofrio R.C., Park K., Kitabayashi N., MacDonald T.Y., Sheikh K., Vuong T., Guiducci C., Cibulskis K., Sivachenko A., Carter S.L., Saksena G., Voet D., Hussain W.M., Ramos A.H., Winckler W., Redman M.C., Ardlie K., Tewari A.K., Mosquera J.M., Rupp N., Wild P.J., Moch H., Morrissey C., Nelson P.S., Kantoff P., Gabriel S.B., Golub T.R., Meyerson M., Lander E.S., Getz G., Rubin M., Garraway L.A. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012 May; 44(6): 685–9. doi: 10.1038/ng.2279.

42. Yang Y.A., Yu J. Current perspectives on FOXA1 regulation of androgen receptor signaling and prostate cancer. Genes Dis. 2015 Jun; 2(2): 144–151. doi: 10.1016/j.gendis.2015.01.003.

43. Nakshatri H., Badve S. FOXA1 in breast cancer. Expert Rev Mol Med. 2009 Mar; 11:e8. doi: 10.1017/S1462399409001008.

44. Yamaguchi N., Ito E., Azuma S., Honma R., Yanagisawa Y., Nishikawa A., Kawamura M., Imai J., Tatsuta K., Inoue J., Semba K., Watanabe S. FoxA1 as a lineage-specific oncogene in luminal type breast cancer. Biochem Biophys Res Commun. 2008 Jan; 365(4): 711–7. doi: 10.1016/j.bbrc.2007.11.064.

45. Shigekawa T., Ijichi N., Ikeda K., Horie-Inoue K., Shimizu C., Saji S., Aogi K., Tsuda H., Osaki A., Saeki T., Inoue S. FOXP1, an estrogeninducible transcription factor, modulates cell proliferation in breast cancer cells and 5-year recurrence-free survival of patients with tamoxifen-treated breast cancer. Horm Cancer. 2011 Oct; 2(5): 286–97. doi: 10.1007/s12672- 011-0082-6.

46. Bernardo G.M., Bebek G., Ginther C.L., Sizemore S.T., Lozada K.L., Miedler J.D., Anderson L.A., Godwin A.K., Abdul-Karim F.W., Slamon D.J., Keri R.A. FOXA1 represses the molecular phenotype of basal breast cancer cells. Oncogene. 2013 Jan; 32(5): 554–63. doi: 10.1038/onc.2012.62.

47. Rangel N., Fortunati N., Osella-Abate S., Annaratone L., Isella C., Catalano M.G., Rinella L., Metovic J., Boldorini R., Balmativola D., Ferrando P., Marano F., Cassoni P., Sapino A., Castellano I. FOXA1 and AR in invasive breast cancer: new findings on their co-expression and impact on prognosis in ER-positive patients. BMC Cancer. 2018; 18(1): 703. doi: 10.1186/s12885-018-4624-y.

48. Bozovic-Spasojevic I., Zardavas D., Brohee S., Ameye L., Fumagalli D., Ades F., de Azambuja E., Bareche Y., Piccart M., Paesmans M., Sotiriou S. The prognostic role of androgen receptor in patients with earlystage breast cancer: a meta-analysis of clinical and gene expression data. Clin Cancer Res. 2017 Jun; 23(11): 2702–2712. doi: 10.1158/1078-0432.CCR-16-0979.

49. Hisamatsu Y., Tokunaga E., Yamashita N., Akiyoshi S., Okada S., Nakashima Y., Taketani K., Aishima S., Oda Y., Morita M., Maehara Y. Impact of GATA-3 and FOXA1 expression in patients with hormone receptor-positive/HER2-negative breast cancer. Breast cancer. 2015; 22(5): 520–8. doi: 10.1007/s12282-013-0515-x.

50. Horimoto Y., Arakawa A., Harada-Shoji N., Sonoue H., Yoshida Y., Himuro T., Igari F., Tokuda E., Mamat O., Tanabe M., Hino O., Saito M. Low FOXA1 expression predicts good response to neo-adjuvant chemotherapy resulting in good outcomes for luminal HER2-negative breast cancer cases. Br J Cancer. 2015 Jan; 112(2): 345–51. doi: 10.1038/bjc.2014.595.

51. De Lara S., Nyqvist J., Werner Rönnerman E., Helou K., Kenne Sarenmalm E., Einbeigi Z., Karlsson P., Parris T.Z., Kovács A. The prognostic relevance of FOXA1 and Nestin expression in breast cancer metastases: a retrospective study of 164 cases during a 10-year period (2004-2014). BMC Cancer. 2019 Feb; 19(1): 187. doi: 10.1186/s12885-019-5373-2.

52. Jing X., Liang H., Hao C., Hongxia L., Cui X. Analyses of an epigenetic switch involved in the activation of pioneer factor FOXA1 leading to the prognostic value of estrogen receptor and FOXA1 co-expression in breast cancer. Aging (Albany NY). 2019 Sep 28; 11(18): 7442–7456. doi: 10.18632/aging.102250.

53. Yamaguchi N., Nakayama Y., Yamaguchi N. Down-regulation of Forkhead box protein A1 (FOXA1) leads to cancer stem cell-like properties in tamoxifen-resistant breast cancer cells through induction of interleukin-6. J Biol Chem. 2017 May; 292(20): 8136–8148. doi: 10.1074/jbc.M116.763276.

54. Fu X., Jeselsohn R., Pereira R., Hollingsworth E.F., Creighton C.J., Li F., Shea M., Nardone A., De Angelis C., Heiser L.M., Anur P., Wang N., Grasso C.S., Spellman P.T., Griffith O.L., Tsimelzon A., Gutierrez C., Huang S., Edwards D.P., Trivedi M.V., Rimawi M.F., Lopez-Terrada D., Hilsenbeck S.G., Gray J.W., Brown M., Osborne C.K., Schiff R. FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci USA. 2016 Oct; 113(43): 6600–6609. doi: 10.1073/pnas.1612835113.

55. Robinson J.L., Hickey T.E., Warren A.Y., Vowler S.L., Carroll T., Lamb A.D., Papoutsoglou N., Neal D.E., Tilley W.D., Carroll J.S. Elevated levels of FOXA1 facilitate androgen receptor chromatin binding resulting in a CRPC-like phenotype. Oncogene. 2014; 33(50): 5666–74. doi: 10.1038/onc.2013.508.

56. Robinson D.R., Wu Y.M., Vats P., Su F., Lonigro R.J., Cao X., Kalyana-Sundaram S., Wang R., Ning Y., Hodges L., Gursky A., Siddiqui J., Tomlins S.A., Roychowdhury S., Pienta K.J., Kim S.Y., Roberts J.S., Rae J.M., Van Poznak C.H., Hayes D.F., Chugh R., Kunju L.P., Talpaz M., Schott A.F., Chinnaiyan A.M. Activating ESR1 mutations in hormoneresistant metastatic breast cancer. Nat.Genet. 2013 Dec; 45(12): 1446–51. doi:10.1038/ng.2823.

57. Jeselsohn R., De Angelis C., Brown M., Schiff R. The Evolving Role of the Estrogen Receptor Mutations in Endocrine Therapy-Resistant Breast Cancer. Curr Oncol Rep. 2017 May; 19(5): 35. doi: 10.1007/s11912-017-0591-8.

58. Van Poznak C., Somerfield M.R., Bast R.C., Cristofanilli M., Goetz M.P., Gonzalez-Angulo A.M., Hicks D.G., Hill E.G., Liu M.C., Lucas W., Mayer I.A., Mennel R.G., Symmans W.F., Hayes D.F., Harris L.N. Use of Biomarkers to Guide Decisions on Systemic Therapy for Women with Metastatic Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2015 Aug; 33(24): 2695–704. doi: 10.1200/JCO.2015.61.1459.

59. Schrijver W., Schuurman K., van Rossum A., Droog M., Jeronimo C., Salta S., Henrique R., Wesseling J., Moelans C., Linn S.C., van den Heuvel M., van Diest P., Zwart W. FOXA1 levels are decreased in pleural breast cancer metastases after adjuvant endocrine therapy, and this is associated with poor outcome. Mol Oncol. 2018 Nov; 12(11): 1884–94. doi: 10.1002/1878-0261.12353.

60. Wang W., Yi M., Chen S., Li J., Li G., Yang J., Zheng P., Zhang H., Xiong W., McCarthy J.B., Li G., Li X., Xiang B. Significance of the NOR1- FOXA1/HDAC2-Slug regulatory network in epithelial-mesenchymal transition of tumor cells. Oncotarget. 2016; 7(13): 16745–59. doi: 10.18632/oncotarget.7778.

61. Anzai E., Hirata K., Shibazaki M., Yamada C., Morii M., Honda T., Yamaguchi N., Yamaguchi N. FOXA1 Induces E-Cadherin Expression at the Protein Level via Suppression of Slug in Epithelial Breast Cancer Cells. Biol Pharm Bull. 2017; 40(9): 1483–1489. doi: 10.1248/bpb.b17-00307.

62. Choi Y.S., Chakrabarti R., Escamilla-Hernandez R., Sinha S. Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev Biol. 2009 May; 329(2): 227–41. doi: 10.1016/j.ydbio.2009.02.032.

63. Kalyuga M., Gallego-Ortega D., Lee H.J., Roden D.L., Cowley M.J., Caldon C.E., Stone A., Allerdice S.L., Valdes-Mora F., Launchbury R., Statham A.L., Armstrong N., Alles M.C., Young A., Egger A., Au W., Piggin C.L., Evans C.J., Ledger A., Brummer T., Oakes S.R., Kaplan W., Gee J.M., Nicholson R.I., Sutherland R.L., Swarbrick A., Naylor M.J., Clark S.J., Carroll J.S., Ormandy C.J. ELF5 suppresses estrogen sensitivity and underpins the acquisition of antiestrogen resistance in luminal breast cancer. PLoS Biol. 2012; 10(12): e1001461. doi: 10.1371/journal.pbio.1001461.

64. Oakes S.R., Naylor M.J., Asselin-Labat M.L., Blazek K.D., Gardiner-Garden M., Hilton H.N., Kazlauskas M., Pritchard M.A., Chodosh L.A., Pfeffer P.L., Lindeman G.J., Visvader J.E., Ormandy C.J. The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev. 2008 Mar; 22(5): 581–6. doi: 10.1101/gad.1614608.

65. Tanos T., Sflomos G., Echeverria P.C., Ayyanan A., Gutierrez M., Delaloye J.F., Raffoul W., Fiche M., Dougall W., Schneider P., YalcinOzuysal O., Brisken C. Progesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med. 2013 Apr; 5(182): 182ra55. doi: 10.1126/scitranslmed.3005654.

66. Harris J., Stanford P.M., Sutherland K., Oakes S.R., Naylor M.J., Robertson F.G., Blazek K.D., Kazlauskas M., Hilton H.N., Wittlin S., Alexander W.S., Lindeman G.J., Visvader J.E., Ormandy C.J. Socs2 and elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol. 2006 May; 20(5): 1177–87. doi: 10.1210/me.2005-0473.

67. Battula V.L., Evans K.W., Hollier B.G., Shi Y., Marini F.C., Ayyanan A., Wang R.Y., Brisken C., Guerra R., Andreeff M., Mani S.A. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells. 2010; 28(8): 1435–45. doi: 10.1002/stem.467.

68. Chakrabarti R., Hwang J., Andres Blanco M., Wei Y., Lukačišin M., Romano R.A., Smalley K., Liu S., Yang Q., Ibrahim T., Mercatali L., Amadori D., Haffty B.G., Sinha S., Kang Y. Elf5 inhibits the epithelialmesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol. 2012; 14(11): 1212–22. doi: 10.1038/ncb2607.

69. Gallego-Ortega D., Ledger A., Roden D.L., Law A.M., Magenau A., Kikhtyak Z., Cho C., Allerdice S.L., Lee H.J., Valdes-Mora F., Herrmann D., Salomon R., Young A.I., Lee B.Y., Sergio C.M., Kaplan W., Piggin C., Conway J.R., Rabinovich B., Millar E.K., Oakes S.R., Chtanova T., Swarbrick A., Naylor M.J., O'Toole S., Green A.R., Timpson P., Gee J.M., Ellis I.O., Clark S.J., Ormandy C.J. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ MyeloidDerived Suppressor Cells. PLoS Biol. 2015 Dec; 13(12): e1002330. doi: 10.1371/journal.pbio.1002330.

70. Fitzgerald L.M., Browne E.P., Christie K.D., Punska E.C., Simmons L.O., Williams K.E., Pentecost B.T., Jawale R., Otis C.N., Arcaro K.F. ELF5 and DOK7 regulation in anti-estrogen treated cells and tumors. Cancer Cell Int. 2016 Feb; 16: 8. doi: 10.1186/s12935-016-0282-9.

71. Omata F., McNamara K.M., Suzuki K., Abe E., Hirakawa H., Ishida T., Ohuchi N.,•Sasano H. Effect of the normal mammary differentiation regulator ELF5 upon clinical outcomes of triple negative breast cancers patients. Breast Cancer. 2018. Jul; 25(4): 489–496. doi: 10.1007/s12282-018-0842-z.

72. Yao B., Zhao J., Li Y., Li H., Hu Z., Pan P., Zhang Y., Du E., Liu R., Xu Y. Elf5 inhibits TGF-β-driven epithelial-mesenchymal transition in prostate cancer by repressing SMAD3 activation. Prostate. 2015; 75(8): 872–82. doi: 10.1002/pros.22970.

73. Xie B.X., Zhang H., Wang J., Pang B., Wu R.Q., Qian X.L., Yu L., Li S.H., Shi Q.G., Huang C.F., Zhou J.G. Analysis of differentially expressed genes in LNCaP prostate cancer progression model. J Androl. 2011; 32(2): 170–82. doi: 10.2164/jandrol.109.008748.

74. Wu B., Cao X., Liang X., Zhang X., Zhang W., Sun G., Wang D. Epigenetic regulation of Elf5 is associated with epithelial-mesenchymal transition in urothelial cancer. PLoS One. 2015; 10(1): e0117510. doi: 10.1371/journal.pone.0117510.

75. Lapinskas E.J., Svobodova S., Davis I.D., Cebon J., Hertzog P.J., Pritchard M.A. The Ets transcription factor ELF5 functions as a tumor suppressor in the kidney. Twin Res Hum Genet. 2011; 14(4): 316–22. doi: 10.1375/twin.14.4.316.

76. Risinger J.I., Maxwell G.L., Chandramouli G.V., Jazaeri A., Aprelikova O., Patterson T., Berchuck A., Barrett J.C. Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res. 2003 Jan; 63(1): 6–11.


Для цитирования:


Васильченко Д.В., Крахмаль Н.В., Вторушин С.В., Завьялова М.В. РОЛЬ ФАКТОРОВ ТРАНСКРИПЦИИ GATA3, FOXA1, ELF5 В ПАТОГЕНЕЗЕ И ПРОГНОЗЕ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ. Сибирский онкологический журнал. 2020;19(3):146-155. https://doi.org/10.21294/1814-4861-2020-19-3-146-155

For citation:


Vasilchenko D.V., Krakhmal N.V., Vtorushin S.V., Zavyalova M.V. THE ROLE OF GATA3, FOXA1, ELF5 TRANSCRIPTION FACTORS IN THE PATHOGENESIS AND PROGNOSIS OF BREAST CANCER. Siberian journal of oncology. 2020;19(3):146-155. (In Russ.) https://doi.org/10.21294/1814-4861-2020-19-3-146-155

Просмотров: 80


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)