Preview

Сибирский онкологический журнал

Расширенный поиск

РОЛЬ ЦИКЛИНА D1 В МЕХАНИЗМАХ РЕЗИСТЕНТНОСТИ К ГОРМОНАЛЬНОЙ ТЕРАПИИ ТАМОКСИФЕНОМ

https://doi.org/10.21294/1814-4861-2020-19-4-138-145

Полный текст:

Аннотация

Рецептор-позитивные опухоли составляют 65–70 % от всех случаев рака молочной железы (РМЖ). Наличие экспрессии эстрогеновых и прогестероновых рецепторов в качестве молекулярных мишеней опухоли обусловливает назначение гормональной терапии больным с рецептор-позитивным РМЖ. При проведении гормонотерапии препаратом выбора на протяжении последних десятилетий остается тамоксифен, являющийся селективным модулятором эстрогеновых рецепторов. Однако развитие резистентности является одной из основных причин, ограничивающих эффективность данного препарата. В связи с этим активно изучаются механизмы лекарственной устойчивости и ведется поиск прогностических маркеров клинического течения РМЖ и эффективности тамоксифена. Одним из таких молекулярных маркеров является представитель семейства регуляторных белков – циклин D1, которому отводится центральная роль в регуляции клеточного цикла. В обзоре представлены данные о вовлечении циклина D1 в эстроген-зависимый сигнальный каскад, охарактеризован ген CCND1 и его наиболее изученные полиморфные локусы, показана прогностическая значимость циклина D1 при рецептор-позитивном РМЖ. Проанализированы результаты экспериментальных и клинических исследований о взаимосвязи уровня экспрессии циклина D1 с эффективностью тамоксифена, рассмотрены современные подходы к преодолению гормонорезистентности на основе исследований циклина D1.

Об авторах

Д. Б. Эрдынеева
Сибирский государственный медицинский университет Министерства здравоохранения Российской Федерации
Россия

Эрдынеева Даяна Батоевна, студент 5 курса медико-биологического факультета

г. Томск, 634050, Московский тракт, 22



Н. Н. Бабышкина
Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук; Национальный исследовательский Томский государственный университет
Россия

Бабышкина Наталия Николаевна, кандидат медицинских наук, старший научный сотрудник лаборатории молекулярной онкологии и иммунологии
SPIN-код: 2738-9275. Author ID (Scopus): 26641099700. Researcher ID (WOS): A-7526-2012.

г. Томск, 634009, пер. Кооперативный, 5;
г. Томск, 634050, пр. Ленина, 36



Т. А. Дронова
Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук; Национальный исследовательский Томский государственный университет
Россия

Дронова Татьяна Анатольевна, аспирант института биологии; младший научный сотрудник лаборатории биологии опухолевой прогрессии.
SPIN-код: 3516-2517. Author ID (Scopus): 6602971247. Researcher ID (WOS): R-5952-2016.

г. Томск, 634009, пер. Кооперативный, 5;
г. Томск, 634050, пр. Ленина, 36



С. В. Вторушин
Сибирский государственный медицинский университет Министерства здравоохранения Российской Федерации; Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук
Россия

Вторушин Сергей Владимирович, доктор медицинских наук, профессор, заведующий отделением общей и молекулярной патологии.
SPIN-код: 2442-4720. Author ID (Scopus): 26654562300. Researcher ID (WOS): S-3789-2016.

г. Томск, 634050, Московский тракт, 22;
г. Томск, 634009, пер. Кооперативный, 5



Е. М. Слонимская
Санкт-Петербургский государственный университет
Россия

Слонимская Елена Михайловна, доктор медицинских наук, профессор, профессор кафедры онкологии медицинского факультета
SPIN-код: 7763-6417. Author ID (Scopus): 6603658443. Researcher ID (WOS): C-7405-2012.

г. Санкт-Петербург, 199034, Университетская наб., 13Б



В. Н. Стегний
Национальный исследовательский Томский государственный университет
Россия

Стегний Владимир Николаевич, доктор биологических наук, профессор, заведующий лабораторией экологии генетики и охраны окружающей среды
SPIN-код: 5588-5450. Author ID (Scopus): 57207471480. Researcher ID (WOS): N-7656-2014.

г. Томск, 634050, пр. Ленина, 36



Н. В. Чердынцева
Сибирский государственный медицинский университет Министерства здравоохранения Российской Федерации; Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук; Национальный исследовательский Томский государственный университет
Россия

Чердынцева Надежда Викторовна, доктор биологических наук, профессор, член-корреспондент РАН, заведующая лабораторией молекулярной онкологии и иммунологии
SPIN-код: 5344-0990. Author ID (Scopus): 6603911744. Researcher ID (WOS): C-7943-2012.

г. Томск, 634050, Московский тракт, 22;
г. Томск, 634009, пер. Кооперативный, 5;
г. Томск, 634050, пр. Ленина, 36



Список литературы

1. Рак. ВОЗ [Интернет]. URL: https://www.who.int/ru/news-room/fact-sheets/detail/cancer. (дата обращения: 28.01.2019).

2. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). М., 2018. 250 с.

3. Curigliano G., Burstein H.J., Winer E.P., Gnant M., Dubsky P., Loibl S., Colleoni М., Regan M.M., Piccart-Gebhart M., Senn H.-J., Thürlimann B. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol. 2017 Jun; 28(8): 1700–12. doi: 10.1093/annonc/mdx308.

4. Burstein H.J., Curigliano G., Loibl S., Dubsky P., Gnant M., Poortmans P., Colleoni М., Carsten D., Piccart-Gebhart M., Regan M., Senn H.-J., Winer E.P., Thurlimann B. Estimating the Benefits of Therapy for Early Stage Breast Cancer The St Gallen International Consensus Guidelines for the Primary Therapy of Early Breast Cancer 2019. Ann Oncol. 2019 Oct; 30(10): 1541–57. doi: 10.1093/annonc/mdz235.

5. Hunt T. Cell biology. Cell cycle gets more cyclins. Nature. 1991 Apr 11; 350(6318): 462–3. doi: 10.1038/350462a0.

6. Sherr C.J., Roberts J.M. Inhibitors of mammalian G1 cyclindependent kinases. Genes Dev. 1995 May 15; 9(10): 114963. doi: 10.1101/gad.9.10.1149.

7. Sicinski P., Donaher J.L., Parker S.B., Li T., Fazeli A., Gardner H., Haslam S.Z., Bronson R.T., Elledge S.J., Weinberg R.A. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell. 1995 Aug 25; 82(4): 621–30. doi: 10.1016/0092-8674(95)90034-9.

8. Wang T.C., Cardiff R.D., Zukerberg L., Lees E., Arnold A., Schmidt E.V. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature. 1994 Jun 23; 369(6482): 669–71. doi: 10.1038/369669a0.

9. Alle K.M., Henshall S.M., Field A.S., Sutherland R.L. Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Cancer Res. 1998 Apr; 4(4): 847–54.

10. Kato J., Matsushime H., Hiebert S.W., Ewen M.E., Sherr C.J. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 1993 Mar; 7(3): 331–42. doi: 10.1101/gad.7.3.331.

11. O’Leary B., Finn R.S., Turner N.C. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016; 13(7): 41730. doi: 10.1038/nrclinonc.2016.26.

12. Zwijsen R.M., Buckle R.S., Hijmans E.M., Loomans C.J., Bernards R. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev. 1998; 12(22): 3488–98. doi: 10.1101/gad.12.22.3488.

13. Griekspoor A., Margarido T.C., Zwart W., Michalides R. Review of: BRCA1 and cyclin D1: gate keepers in hormone responsive tissues? Breast Cancer Online. 2006 Mar 22; 9(4): 1–3. doi: 10.1017/S1470903106005098.

14. Ortiz A.B., Garcia D., Vicente Y., Palka M., Bellas C., Martin P. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma. PLoS One. 2017 Nov 15; 12(11): e0188068. doi: 10.1371/journal.pone.0188068.

15. Holm K., Staaf J., Jönsson G., Vallon-Christersson J., Gunnarsson H., Arason A., Magnusson L., Barkardottir R.B., Hegardt C., Ringnér M., Borg A. Characterisation of amplification patterns and target genes at chromosome 11q13 in CCND1-amplified sporadic and familial breast tumours. Breast Cancer Res Treat. 2012 Jun; 133(2): 583–94. doi:10.1007/s10549-011-1817-3.

16. Roy P.G., Pratt N., Purdie C.A., Baker L., Ashfield A., Quinlan P., Thompson A.M. High CCND1 amplification identifies a group of poor prognosis women with estrogen receptor positive breast cancer. Int J Cancer. 2010 Jul; 127(2): 355–60. doi:10.1002/ijc.25034.

17. Bartkova J., Lukas J., Muller H., Lutzhoft D., Strauss M., Bartek J. Cyclin D1 protein expression and function in human breast cancer. Int J Cancer. 1994 May; 57: 353–361. doi:10.1002/ijc.2910570311.

18. Solomon D.A., Wang Y., Fox S.R., Lambeck T.C., Giesting S., Lan Z., Senderowicz A.M., Conti C.J., Knudsen E.S. Cyclin D1 splice variants. Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem. 2003; 278(32): 30339–47. doi: 10.1074/jbc.M303969200.

19. Thakur N., Kumari S., Mehrotra R. Association between Cyclin D1 G870A (rs9344) polymorphism and cancer risk in Indian population: meta-analysis and trial sequential analysis. Biosci Rep. 2018 Nov 30; 38(6): BSR20180694. doi: 10.1042/BSR20180694.

20. Sergentanis T.N., Economopoulos K.P. Cyclin D1 G870A polymorphism and breast cancer risk: a meta-analysis comprising 9,911 cases and 11,171 controls. Mol Biol Rep. 2010 Dec; 38(8): 4955–63. doi:10.1007/s11033-010-0639-4.

21. Lu C., Dong J., Ma H., Jin G., Hu Z., Peng Y., Guo X., Wang X., Shen H. CCND1 G870A polymorphism contributes to breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat. 2008 Sep 26; 116(3): 571–575. doi: 10.1007/s10549-008-0195-y 60.

22. Cui J., Shen L., Wang Y. Specific CCND1 G870A Alleles associated with breast cancer susceptibility: a meta-analysis of 5,528 cases and 5,353 controls. Asian Pac J Cancer Prev. 2012; 13(10): 5023–25. doi: 10.7314/APJCP.2012.13.10.5023.

23. Soleimani Z., Kheirkhah D., Sharif M.R., Sharif A., Karimian M., Aftabi Y. Association of CCND1 gene c.870G>A polymorphism with breast cancer risk: a case-control study and a meta-analysis. Pathol Oncol Res. 2016 Dec 21; 23(3): 621–631. doi: 10.1007/s12253-016-0165-3.

24. Hosokawa Y., Suzuki R., Joh T., Maeda Y., Nakamura S., Kodera Y., Arnold A., Seto M. A small deletion in the 3’-untranslated region of the cyclin D1/PRAD1/bcl-1 oncogene in a patient with chronic lymphocytic leukemia. Int J Cancer 1998; 76(6): 791–796. doi: 10.1002/(sici)1097-0215(19980610)76:6<791::aid-ijc4>3.0.co;2-t.

25. Dai X., Zhang X., Wang B., Wang C., Jiang J., Wu C. Association between polymorphism rs678653 in human Cyclin D1 gene (CCND1) and susceptibility to cancer: a meta-analysis. Medical Science Monitor. 2016 Mar 16; 22: 863–874. doi: 10.12659/msm.895237.

26. Mavaddat N., Dunning A.M., Ponder B.A.J., Easton D.F., Pharoah P.D. Common genetic variation in candidate genes and susceptibility to subtypes of breast cancer. Cancer Epidemiol Biomarkers Prev. 2009 Jan; 18(1): 255–259. doi: 10.1158/1055-9965.epi-08-0704.

27. Hicks C., Asfour R., Pannuti A., Miele L. An Integrative genomics approach to biomarker discovery in breast cancer. Cancer Inform. 2011 Jul; 10: 185–204. doi: 10.4137/CIN.S6837.

28. Ahlin C., Lundgren C., Embretsén-Varro E., Jirström K., Blomqvist C., Fjällskog M. High expression of cyclin D1 is associated to high proliferation rate and increased risk of mortality in women with ER-positive but not in ER-negative breast cancers. Breast Cancer Res Treat. 2017 Aug; 164(3): 667–678. doi: 10.1007/s10549-017-4294-5.

29. Kenny F.S., Hui R., Musgrove E.A., Gee J.M., Blamey R.W., Nicholson R.I., Sutherland R.L., Robertson J.F. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin Cancer Res. 1999 Aug; 5(8): 2069–2076.

30. He Q., Wu J., Liu X.L., Ma Y.H., Wu X.T., Wang W.Y., An H.X. Clinicopathological and prognostic significance of cyclin D1 amplification in patients with breast cancer: a meta-analysis. J BUON. 2017; 22(5): 1209–16.

31. Beca F., Pereira M., Cameselle-Teijeiro J.F., Martins D., Schmitt F. Altered PPP2R2A and Cyclin D1 expression defines a subgroup of aggressive luminal-like breast cancer. BMC Cancer. 2015; 15: 285. doi:10.1186/s12885-015-1266-1.

32. Sun X., Zhangyuan G., Shi L., Wang Y., Sun B., Ding Q. Prognostic and clinicopathological significance of cyclin B expression in patients with breast cancer: a meta-analysis. Medicine (Baltimore). 2017 May; 96(19): e6860. doi: 10.1097/MD.0000000000006860.

33. Tobin N.P., Lundgren K.L., Conway C., Anagnostaki L., Costello S., Landberg G. Automated image analysis of cyclin D1 protein expression in invasive lobular breast carcinoma provides independent prognostic information. Hum Pathol. 2012 Nov; 43(11): 2053–61. doi: 10.1016/j.humpath.2012.02.015.

34. Elsheikh S., Green A.R., Aleskandarany M.A., Grainge M., Paish C.E., Lambros M.B., Reis-Filho J.S., Ellis I.O. CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat. 2007 Jul 26; 109(2): 325–335. doi: 10.1007/s10549-007-9659-8.

35. Rudas M., Lehnert M., Huynh A., Jakesz R., Singer C., Lax S., Schippinger W., Dietze O., Greil R., Stiglbauer W., Kwasny W., Grill R., Stierer M., Gnant M.F., Filipits M., Austrian Breast and Colorectal Cancer Study G. Cyclin D1 expression in breast cancer patients receiving adjuvant tamoxifen-based therapy. Clin Cancer Res. 2008 Mar 15; 14(6): 1767–74. doi:10.1158/1078-0432.CCR-07-4122.

36. Aaltonen K., Amini R.M., Landberg G., Eerola H., Aittomaki K., Heikkila P., Nevanlinna H., Blomqvist C. Cyclin D1 expression is associated with poor prognostic features in estrogen receptor positive breast cancer. Breast Cancer Res Treat. 2009; 113(1): 75–82. doi: 10.1007/s10549-008-9908-5.

37. Choschzick M., Heilenkotter U., Lebeau A., Jaenicke F., Terracciano L., Bokemeyer C., Sauter G., Simon R. MDM2 amplification is an independent prognostic feature of node-negative, estrogen receptor-positive early-stage breast cancer. Cancer Biomark. 2010; 8(2): 53–60. doi: 10.3233/DMA-2011-0806.

38. Umekita Y., Ohi Y., Sagara Y., Yoshida H. Overexpression of cyclin D1 predicts for poor prognosis in estrogen receptor negative breast cancer patients. Int J Cancer. 2002; 98(3): 415–418. doi: 10.1002/ijc.10151.

39. Lundgren K., Brown M., Pineda S., Cuzick J., Salter J., Zabaglo L., Howell A., Dowsett M., Landberg G. Effects of cyclin D1 gene amplification and protein expression on time to recurrence in postmenopausal breast cancer patients treated with anastrozole or tamoxifen: a TransATAC study. Breast Cancer Res. 2012; 14(2): R57. doi: 10.1186/bcr3161.

40. Li Z., Cui J., Yu Q., Wu X., Pan A., Li L. Evaluation of CCND1 amplification and CyclinD1 expression: diffuse and strong staining of CyclinD1 could have same predictive roles as CCND1 amplification in ER positive breast cancers. Am J Transl Res. 2016 Jan 15; 8(1): 142–153.

41. Doisneau-Sixou S.F., Sergio C.M., Carroll J.S., Hui R., Musgrove E.A., Sutherland R.L. Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer. 2003 Jun; 10(2): 179–186. doi: 10.1677/erc.0.0100179.

42. Hui R., Finney G.L., Carroll J.S., Lee C.S., Musgrove E.A., Sutherland R.L. Constitutive overexpression of cyclin D1 but not cyclin E confers acute resistance to antiestrogens in T-47D breast cancer cells. Cancer Res. 2002; 62: 6916–23.

43. Wilcken N.R., Prall O.W., Musgrove E.A., Sutherland R.L. Inducible overexpression of cyclin D1 in breast cancer cells reverses the growthinhibitory effects of antiestrogens. Clin Cancer Res. 1997; 3: 849–854.

44. Huber-Keener K.J., Liu X., Wang Z., Wang Y., Freeman W., Wu S., Planas-Silva M.D., Ren X., Cheng Y., Zhang Y., Vrana K., Liu C.G., Yang J.M., Wu R. Differential gene expression in tamoxifen-resistant breast cancer cells revealed by a new analytical model of RNA-Seq Data. PLoSONE. 2012; 7(7): e41333. doi: 10.1371/journal.pone.0041333.

45. Ahnstrom M., Nordenskjold B., Rutqvist L.E., Skoog L., Stal O. Role of cyclin D1 in ErbB2-positive breast cancer and tamoxifen resistance. Breast Cancer Res Treat. 2005; 91(2): 145–151. doi: 10.1007/s10549-004-6457-4.

46. Stendahl M., Kronblad A., Ryden L., Emdin S., Bengtsson N.O., Landberg G. Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients. Br J Cancer. 2004; 90(10): 1942–1948. doi: 10.1038/sj.bjc.6601831.

47. Babyshkina N., Vtorushin S., Zavyalova M., Patalyak S., Dronova T., Litviakov N., Slonimskaya E., Kzhyshkowska J., Cherdyntseva N., Choynzonov E. The distribution pattern of ERα expression, ESR1 genetic variation and expression of growth factor receptors: association with breast cancer prognosis in Russian patients treated with adjuvant tamoxifen. Clin Exp Med. 2017 Aug; 17(3): 383–393. doi: 10.1007/s10238-016-0428-z.

48. Слонимская Е.М., Вторушин С.В., Бабышкина Н.Н., Паталяк С.В. Роль морфологических и генетических особенностей строения рецепторов эстрогенов альфа в развитии резистентности к эндокринотерапии тамоксифеном у пациенток с люминальным раком молочной железы. Сибирский онкологический журнал. 2014; 3: 39–44.

49. Xing J., Li J., Fu L., Gai J., Guan J., Li Q. SIRT4 enhances the sensitivity of ER-positive breast cancer to tamoxifen by inhibiting the IL-6/STAT3 signal pathway. Cancer Med. 2019 Nov; 8(16):7086–7097. doi: 10.1002/cam4.2557.

50. Cheng R., Liu Y.J., Cui J.W., Yang M., Liu X.L. , Li P., Wang Z., Zhu L.Z., Lu S.Y., Zou L., Wu X.Q., Li Y.X., Zhou Y., Fang Z.Y., Wei W. Aspirin regulation of c-myc and cyclinD1 proteins to overcome tamoxifen resistance in estrogen receptor-positive breast cancer cells. Oncotarget. 2017 May 2; 8(18): 30252–30264. doi: 10.18632/oncotarget.16325.

51. Zheng X.Q., Guo J.P., Yang H., Kanai M., He L.L., Li Y.Y., Koomen J.M., Minton S., Gao M., Ren X.B., Coppola D., Cheng J.Q. Aurora-A is a determinant of tamoxifen sensitivity through phosphorylation of ERα in breast cancer. Oncogene. 2014 Oct; 33(42): 4985–96. doi: 10.1038/onc.2013.444.

52. Кононенко И.Б., Снеговой А.В., Сельчук В.Ю. Ингибиторы циклин-зависимых киназ: эффективность и безопасность. Медицинский Совет. 2019; 10: 42–55. doi: 10.21518/2079-701X-2019-10-42-55.

53. Sobhani N., D’Angelo A., Pittacolo M., Roviello G., Miccoli A., Corona S.P., Bernocchi O., Generali D., Otto T. Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer. Cells. 2019 Apr 6; 8(4). pii: E321. doi: 10.3390/cells8040321.

54. Finn R.S., Dering J., Conklin D., Kalous O., Cohen D.J., Desai A.J., Ginther C., Atefi M., Chen I., Fowst C., Los G., Slamon D.J. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009; 11(5): R77. doi: 10.1186/bcr2419.

55. Cristofanilli M., Turner N.C, Bondarenko I., Ro J., Im S.A., Masuda N., Colleoni M., DeMichele A., Loi S., Verma S., Iwata H., Harbeck N., Zhang K., Theall K.P., Jiang Y., Bartlett C.H., Koehler M., Slamon D. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016 Apr; 17(4): 425–439. doi: 10.1016/S1470-2045(15)00613-0.

56. FoundationOne CDx-P170019 FDA [Internet]. URL: https://www.fda.gov/medical-devices/recently-approved-devices/foundationonecdx-p170019. (cited: 21.01.2020).


Для цитирования:


Эрдынеева Д.Б., Бабышкина Н.Н., Дронова Т.А., Вторушин С.В., Слонимская Е.М., Стегний В.Н., Чердынцева Н.В. РОЛЬ ЦИКЛИНА D1 В МЕХАНИЗМАХ РЕЗИСТЕНТНОСТИ К ГОРМОНАЛЬНОЙ ТЕРАПИИ ТАМОКСИФЕНОМ. Сибирский онкологический журнал. 2020;19(4):138-145. https://doi.org/10.21294/1814-4861-2020-19-4-138-145

For citation:


Erdyneeva D.B., Babyshkina N.N., Dronova T.A., Vtorushin S.V., Slonimskaya E.M., Stegniy V.N., Cherdyntseva N.V. ROLE OF CYCLIN D1 IN THE MECHANISMS OF TAMOXIFEN RESISTANCE. Siberian journal of oncology. 2020;19(4):138-145. (In Russ.) https://doi.org/10.21294/1814-4861-2020-19-4-138-145

Просмотров: 100


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)