Preview

Siberian journal of oncology

Advanced search

CELL MOTILITY PROTEINS IN ENDOMETRIUM CARCINOMA AND ENDOMETRIAL HYPERPLASIA: ASSOCIATION WITH CANCER RISK

https://doi.org/10.21294/1814-4861-2020-19-5-51-60

Abstract

Introduction. Proteins associated with cellular motility are known to play an important role in invasion and metastasis of cancer, however there is no evidence of their association with the development of malignant tumors including endometrial cancer (EC).

The aim of the present study was to investigate the levels of actin-binding proteins, p45-Ser-β-catenin, and calpain activity in endometrial hyperplasia and in EC.

Material and Methods. Total calpain activity, p45-Ser β-catenin, Arp3, gelsolin, cofillin and thymosin β-4 levels were evaluated in 43 postmenopausal patients with stage I–II endometrioid EC and 40 endometrial hyperplasia patients. Flow cytometry and Western blotting were used for expression determination of p45 Ser β-catenin and actin-biding proteins. Total calpain activity was estimated by fluorimetric method.

Results. Levels of cofilin-1, thymosin β-4 and calpain activity were higher in cancer tissues than in endometrial hyperplasia. Cofilin-1 and thymosin β-4 levels were associated with the depth of myometrial invasion. The thymosin β-4 expression was correlated with the presence of tumor cervical invasion. Revealed correlations between the actin-binding proteins, p45-Ser-β-catenin and total calpain activity in endometrial hyperplasia tissue, but not in the tissue of cancer, is evidence of the involvement of these proteases in regulation of cell migration in endometrial hyperplasia. Levels of thymosin β-4, cofilin and total calpain activity are independent cancer risk factors in patients with endometrial hyperplasia.

Conclusion. The level of actin-binding proteins as well as the total calpain activity were enhanced in endometrium carcinoma tissues compared to endometrial hyperplasia. The levels of thymosinβ-4, cofilin and total calpain activity in endometrial hyperplasia tissues are associated with a hyperplasia transition to cancer and may be considered as predictive biomarkers. 

About the Authors

N. V. Yunusova
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Siberian State Medical University
Russian Federation

DSc, Leading Researcher, Laboratory of Tumor Biochemistry,

5, Kooperativny Street, 634050-Tomsk;

2, Moskovsky Trakt, 634050-Tomsk



L. V. Spirina
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Siberian State Medical University
Russian Federation

DSc, Senior Researcher, Laboratory of Tumor Biochemistry,

5, Kooperativny Street, 634050-Tomsk;

2, Moskovsky Trakt, 634050-Tomsk



A. L. Chernyshova
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

MD, DSc, Leading Researcher, Department of Gynecology,

5, Kooperativny Street, 634050-Tomsk



E. S. Kolegova
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

PhD, Researcher,

5, Kooperativny Street, 634050-Tomsk



E. A. Sidenko
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Postgraduate, 

5, Kooperativny Street, 634050-Tomsk



L. A. Kolomiets
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Siberian State Medical University
Russian Federation

MD, DSc, Professor, Head of Gynecology Department,

5, Kooperativny Street, 634050-Tomsk;

2, Moskovsky Trakt, 634050-Tomsk



I. V. Kondakova
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

DSc, Professor, Head of the Laboratory of Tumor Biochemistry,

5, Kooperativny Street, 634050-Tomsk



References

1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018 Jan; 68(1): 7–30. doi: 10.3322/caac.21442.

2. Felix A.S., Yang H.P., Bell D.W., Sherman M.E. Epidemiology of Endometrial Carcinoma: Etiologic Importance of Hormonal and Metabolic Influences. Adv Exp Med Biol. 2017; 943: 3–46. doi: 10.1007/978-3-319-43139-0_1.

3. Kamal A., Tempest N., Parkes C., Alnafakh R., Makrydima S., Adishesh M., Hapangama D.K. Hormones and endometrial carcinogenesis. Horm Mol Biol Clin Investig. 2016 Feb; 25(2): 129–48. doi: 10.1515/hmbci-2016-0005.

4. Spirina L.V., Bochkareva N.V., Kondakova I.V., Kolomiets L.A., Shashova E.E., Koval’ V.D., Chernysheva A.L., Asadchikova O.N. Regulation of insulin-like growth factors and NF-kappaB by proteasome system in endometrial cancer. Mol Biol (Mosk). 2012 May-Jun; 46(3): 452–60.

5. Gawron I., Łoboda M., Babczyk D., Ludwin I., Basta P., Pityński K., Ludwin A. Endometrial cancer and hyperplasia rate in women before menopause with abnormal uterine bleeding undergoing endometrial sampling. Przegl Lek. 2017; 74(4): 139–43.

6. Chen M., Jin Y., Li Y., Bi Y., Shan Y., Pan L. Oncologic and reproductive outcomes after fertility-sparing management with oral progestin for women with complex endometrial hyperplasia and endometrial cancer. Int J Gynaecol Obstet. 2016 Jan; 132(1): 34–8. doi: 10.1016/j.ijgo.2015.06.046.

7. Markowska A., Pawałowska M., Lubin J., Markowska J. Signalling pathways in endometrial cancer. Contemp Oncol (Pozn). 2014; 18(3): 143–8. doi: 10.5114/wo.2014.43154.

8. Zhang X.H., Li M., Kang Y.J., Xie Y.Q., Cao Y.X. Long non-coding RNA LINP1 functions as an oncogene in endometrial cancer progression by regulating the PI3K/AKT signaling pathway. Eur Rev Med Pharmacol Sci. 2019 Aug; 23(16): 6830–6838. doi: 10.26355/eurrev_201908_18722.

9. Kondakova I.V., Spirina L.V., Shashova E.E., Koval’ V.D., Kolomiets L.A., Chernysheva A.L., Slonimskaia E.M. Proteasome activity in tumors of female reproductive system. Bioorg Khim. 2012 Jan-Feb; 38(1): 106–10. doi: 10.1134/s106816201201013x.

10. Kondakova I.V., Spirina L.V., Koval V.D., Shashova E.E., Choinzonov E.L., Ivanova E.V., Kolomiets L.A., Chernyshova A.L., Slonimskaya E.M., Usynin E.A., Afanas’ev S.G. Chymotrypsin-like activity and subunit composition of proteasomes in human cancers. Molecular Biology. 2014; 48(3): 384–389. doi: 10.1134/S002689331403011X.

11. Nesina I.P., Iurchenko N.P., Buchynska L.G. Markers of the epithelial-mesenchymal transition in cells of endometrial carcinoma. Exp Oncol. 2018 Oct; 40(3): 218–222.

12. dos Remedios C.G., Chhabra D., Kekic M., Dedova I.V., Tsubakihara M., Berry D.A., Nosworthy N.J. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev. 2003 Apr; 83(2): 433–73. doi: 10.1152/physrev.00026.2002.

13. Huang H.C., Hu C.H., Tang M.C., Wang W.S., Chen P.M., Su Y. Thymosin beta4 triggers an epithelial-mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase. Oncogene. 2007 Apr 26; 26(19): 2781–90. doi: 10.1038/sj.onc.1210078.

14. Maimaiti Y., Tan J., Liu Z., Guo Y., Yan Y., Nie X., Huang B., Zhou J., Huang T. Overexpression of cofilin correlates with poor survival in breast cancer: A tissue microarray analysis. Oncol Lett. 2017 Aug; 14(2): 2288–2294. doi: 10.3892/ol.2017.6413.

15. Baczynska D., Bombik I., Malicka-Błaszkiewicz M. β-Catenin Expression Regulates Cell Migration of Human Colonic Adenocarcinoma Cells Through Gelsolin. Anticancer Res. 2016; 36(10): 5249–56. doi: 10.21873/anticanres.11095.

16. Kazazian K., Go C., Wu H., Brashavitskaya O., Xu R., Dennis J.W., Gingras A.C., Swallow C.J. Plk4 Promotes Cancer Invasion and Metastasis through Arp2/3 Complex Regulation of the Actin Cytoskeleton. Cancer Res. 2017 Jan 15; 77(2): 434–447. doi: 10.1158/0008-5472.CAN-16-2060.

17. Bowser J.L., Blackburn M.R., Shipley G.L., Molina J.G., Dunner K.Jr., Broaddus R.R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest. 2016 Jan; 126(1): 220–38. doi: 10.1172/JCI79380.

18. Kiewisz J., Wasniewski T., Kmiec Z. Participation of WNT and β-Catenin in Physiological and Pathological Endometrial Changes: Association with Angiogenesis. Biomed Res Int. 2015; 2015: 854056. doi: 10.1155/2015/854056.

19. Chan D.W., Mak C.S., Leung T.H., Chan K.K., Ngan H.Y. Downregulation of Sox7 is associated with aberrant activation of Wnt/b-catenin signaling in endometrial cancer. Oncotarget. 2012 Dec; 3(12): 1546–56. doi: 10.18632/oncotarget.667.

20. Wang E., Wang D., Li B., Ma H., Wang C., Guan L., Zhang H., Yi L., Li S. Capn4 promotes epithelial-mesenchymal transition in human melanoma cells through activation of the Wnt/β-catenin pathway. Oncol Rep. 2017 Jan; 37(1): 379–387. doi: 10.3892/or.2016.5247.

21. Bravo-Cordero J.J., Cordani M., Soriano S.F., Díez B., Muñoz-Agudo C., Casanova-Acebes M., Boullosa C., Guadamillas M.C., Ezkurdia I., González-Pisano D., Del Pozo M.A., Montoya M.C. A novel high-content analysis tool reveals Rab8-driven cytoskeletal reorganization through Rho GTPases, calpain and MT1-MMP. J Cell Sci. 2016 Apr 15; 129(8): 1734–49. doi: 10.1242/jcs.174920.

22. Xu C., Yu X., Zhu Y., Cai Z., Yu L., Lin Y., Yu H., Xue Z., Zhou L. Overexpression of calpain 1 predicts poor outcome in patients with colorectal cancer and promotes tumor cell progression associated with downregulation of FLNA. Oncol Rep. 2019 Jun; 41(6): 3424–3434. doi: 10.3892/or.2019.7121.

23. Ivanova E.V., Kondakova I.V., Spirina L.V., Afanas’ev S.G., Avgustinovich A.V., Cheremisina O.V. Chymotrypsin-like activity of proteasomes and total calpain activity in gastric and colorectal cancer. Bull Exp Biol Med. 2014 Oct; 157(6): 781–4. doi: 10.1007/s10517-014-2666-y.

24. Kondakova I.V., Iunusova N.V., Spirina L.V., Kolomiets L.A., Villert A.B. Association of intracellular proteinase activities with the content of locomotor proteins in tissues of primary tumors and metastasis in ovarian cancer. Bioorg Khim. 2014 Nov-Dec; 40(6): 735–42. doi: 10.1134/s1068162014060089.

25. Salehin D., Fromberg I., Haugk C., Dohmen B., Georg T., Bohle R.M., Bauerschlag D., Maass N., Friedrich M. Immunhistochemical analysis for expression of calpain 1, calpain 2 and calpastatin in endometrial cancer. Anticancer Res. 2010 Jul; 30(7): 2837–43.

26. Sandmann S., Prenzel F., Shaw L., Schauer R., Unger T. Activity profile of calpains I and II in chronically infarcted rat myocardium-- influence of the calpain inhibitor CAL 9961. Br J Pharmacol. 2002 Apr; 135(8): 1951–8. doi: 10.1038/sj.bjp.0704661.

27. Zhou J., Wang Y., Fei J., Zhang W. Expression of cofilin 1 is positively correlated with the differentiation of human epithelial ovarian cancer. Oncol Lett. 2012 Dec; 4(6): 1187–1190. doi: 10.3892/ol.2012.897.

28. Gun B.D., Bahadir B., Bektas S., Barut F., Yurdakan G., Kandemir N.O., Ozdamar S.O. Clinicopathological significance of fascin and CD44v6 expression in endometrioid carcinoma. Diagn Pathol. 2012 Jul 11; 7: 80. doi: 10.1186/1746-1596-7-80.

29. Nishimura S., Tsuda H., Kataoka F., Arao T., Nomura H., Chiyoda T., Susumu N., Nishio K., Aoki D. Overexpression of cofilin 1 can predict progression-free survival in patients with epithelial ovarian cancer receiving standard therapy. Hum Pathol. 2011 Apr; 42(4): 2012‒21. doi: 10.1016/j.humpath.2010.07.019.

30. Ji P., Diederichs S., Wang W., Böing S., Metzger R., Schneider P.M., Tidow N., Brandt B., Buerger H., Bulk E., Thomas M., Berdel W.E., Serve H., Müller-Tidow C. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003 Sep 11; 22(39): 8031–41. doi: 10.1038/sj.onc.1206928.

31. Noske A., Denkert C., Schober H., Sers C., Zhumabayeva B., Weichert W., Dietel M., Wiechen K. Loss of Gelsolin expression in human ovarian carcinomas. Eur J Cancer. 2005; 41(3): 461–9. doi: 10.1016/j.ejca.2004.10.025.

32. Zheng H.C., Zheng Y.S., Li X.H., Takahashi H., Hara T., Masuda S., Yang X.H., Guan Y.F., Takano Y. Arp2/3 overexpression contributed to pathogenesis, growth and invasion of gastric carcinoma. Anticancer Res. 2008 Jul-Aug; 28(4B): 2225–32.

33. Yoon Y.J., Han Y.M., Choi J., Lee Y.J., Yun J., Lee S.K., Lee C.W., Kang J.S., Chi S.W., Moon J.H., Lee S., Han D.C., Kwon B.M. Benproperine, an ARPC2 inhibitor, suppresses cancer cell migration and tumor metastasis. Biochem Pharmacol. 2019 May; 163: 46–59. doi: 10.1016/j.bcp.2019.01.017.

34. Spirina L.V., Yunusova N.V., Kondakova I.V., Kolomiets L.A., Koval V.D., Chernyshova A.L., Shpileva O.V. Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer. Mol Biol Rep. 2012 Sep; 39(9): 8655–62. doi: 10.1007/s11033-012-1720-y.


Review

For citations:


Yunusova N.V., Spirina L.V., Chernyshova A.L., Kolegova E.S., Sidenko E.A., Kolomiets L.A., Kondakova I.V. CELL MOTILITY PROTEINS IN ENDOMETRIUM CARCINOMA AND ENDOMETRIAL HYPERPLASIA: ASSOCIATION WITH CANCER RISK. Siberian journal of oncology. 2020;19(5):51-60. https://doi.org/10.21294/1814-4861-2020-19-5-51-60

Views: 880


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)