Preview

Siberian journal of oncology

Advanced search

TISSUE REGENERATION AND ONCOGENESIS-SIMILARITIES AND DIFFERENCES

https://doi.org/10.21294/1814-4861-2021-20-2-5-12

Abstract

 Regenerative medicine represents the field of medicine that aims to grow lost or damaged human organs and tissues. The promise of regenerative medicine focuses on the development of therapy that can regenerate and restore tissues and organs in the human body. The regenerative medicine  has the potential of cell renewal in our body, reaching about a kilogram per day, tens of tons in our life. Recent data indicate that a tumor is a tissue that largely repeats the pattern of growth and regeneration of normal tissue. Similar to normal stem cells, tumor stem cells are capable of initiating tumor and its growth. Scientists consider that cancer is a payment for multicellularity [1]. Undoubtedly, this potential must be learned to manage. This is a very difficult problem, since many fundamental mechanisms of cell formation and death have not been fully understood. The development of regenerative medicine as a fundamentally new type of medicine will make it  possible not only to control stem cell renewal, but also to prevent malignant transformation. The identification of proteins, micro-RNAs and other factors that regulate the formation and death of cells will identify potential targets  for both stimulating endogenous regeneration and controlling cancer. 

About the Author

V. A. Tkachuk
Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University
Russian Federation

 DSc, Member of the Russian Academy of Sciences, Director of Medical Research and Education Center; Head of Biochemistry and Molecular Medicine

Researcher ID (WOS): J-9357-2012. Author ID (Scopus): 24455385800 

 27/10, Lomonosovsky prospect, 119192, Moscow, Russia 



References

1. Pennisi E. Is cancer a breakdown of multicellularity. Science. 2018 Jun; 360(6396): 1391–1391. doi: 10.1126/science.360.6396.1391.

2. Maximow A. The lymphocyte as a stem cell, common to different blood elements in embryonic development and during the post-fetal life of mammals. Cell Ther Transplant. 2009; 1(3): 14–24. doi: 10.3205/ctt-2009-en-000032.01.

3. Pittenger M.F., Discher D.E., Péault B.M., Phinney D.G., Hare J.M., Caplan A.I. Mesenchymal stem cell perspective: cell biology to clinical progress. Regen Med. 2019 Dec; 4(1): 22. doi: 10.1038/s41536-019-0083-6.

4. Kalinina N.I., Sysoeva V.Y., Rubina K.A., Parfenova Y. V., Tkachuk V.A. Mesenchymal Stem Cells in Tissue Growth and Repair. Acta Naturae. 2011 Dec; 3(4): 30–7. doi: 10.32607/20758251-2011-3-4-30-37.

5. Hogg P.J., McLachlan E.M. Blood vessels and nerves: together or not. Lancet. 2002 Nov; 360(9347): 1714. doi: 10.1016/S0140-6736(02)11726-0.

6. Slobodkina E., Karagyaur M., Balabanyan V., Makarevich P. Gene therapy in regenerative medicine: latest achievements and actual directions of development. Genes & Cells. 2020 Mar; 15(1). doi: 10.23868/202003001.

7. Quijano L.M., Lynch K.M., Allan C.H., Badylak S.F., Ahsan T. Looking Ahead to Engineering Epimorphic Regeneration of a Human Digit or Limb. Tissue Eng Part B Rev. 2016 Jun; 22(3): 251–62. doi: 10.1089/ten.teb.2015.0401.

8. Blokland K.E.C., Pouwels S.D., Schuliga M., Knight D.A., Burgess J.K. Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clin Sci. 2020 Oct; 134(20): 2681–706. doi: 10.1042/CS20190893.

9. Aleckovic M., Simón C. Is teratoma formation in stem cell research a characterization tool or a window to developmental biology. Reprod Biomed Online. 2008 Jan; 17(2): 270–80. doi: 10.1016/S1472-6483(10)60206-4.

10. Cieślar-Pobuda A., Knoflach V., Ringh M. V., Stark J., Likus W., Siemianowicz K., Ghavami S., Hudecki A., Green J.L., Łos M.J. Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. Biochim Biophys Acta Mol Cell Res. 2017 Jul; 1864(7): 1359–69. doi: 10.1016/j.bbamcr.2017.04.017.

11. Moradi S., Asgari S., Baharvand H. Concise Review: Harmonies Played by MicroRNAs in Cell Fate Reprogramming. Stem Cells. 2014 Jan; 32(1): 3–15. doi: 10.1002/stem.1576.

12. Zhang J., Li S., Li L., Li M., Guo C., Yao J., Mi S. Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genomics Proteomics Bioinformatics. 2015 Feb; 13(1): 17–24. doi: 10.1016/j.gpb.2015.02.001.

13. Anokye-Danso F., Snitow M., Morrisey E.E. How microRNAs facilitate reprogramming to pluripotency. J Cell Sci. 2012 Sep; 125(18): 4179–787. doi: 10.1242/jcs.095968.

14. Rybinski B., Franco-Barraza J., Cukierman E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genomics. 2014 Apr; 46(7): 223–44. doi: 10.1152/physiolgenomics.00158.2013.

15. Baramiya M.G., Baranov E. From cancer to rejuvenation: incomplete regeneration as the missing link (Part I: the same origin, different outcomes). Futur Sci OA. 2020 Mar; 6(3): FSO450. doi: 10.2144/fsoa-2019-0119.

16. Zhou X., Hong Y., Zhang H., Li X. Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges. Front Cell Dev Biol. 2020 Jun; 8. doi: 10.3389/fcell.2020.00364.

17. Oh J., Lee Y.D., Wagers A.J. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med. 2014 Aug; 20(8): 870–80. doi: 10.1038/nm.3651.

18. Schultz M.B., Sinclair D.A. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development. 2016 Jan; 143(1): 3–14. doi: 10.1242/dev.130633.

19. Kalinina N., Kharlampieva D., Loguinova M., Butenko I., Pobeguts O., Efimenko A., Ageeva L., Sharonov G., Ischenko D., Alekseev D., Grigorieva O., Sysoeva V., Rubina K., Lazarev V., Govorun V. Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Res Ther. 2015 Dec; 6(1): 221. doi: 10.1186/s13287-015-0209-8.

20. Jackson W.M., Nesti L.J., Tuan R.S. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther. 2012; 3(3): 20. doi: 10.1186/scrt111.

21. Cyranoski D. The CRISPR-baby scandal: what’s next for human gene-editing. Nature. 2019 Feb; 566(7745): 440–2. doi: 10.1038/d41586-019-00673-1.


Review

For citations:


Tkachuk V.A. TISSUE REGENERATION AND ONCOGENESIS-SIMILARITIES AND DIFFERENCES. Siberian journal of oncology. 2021;20(2):5-12. (In Russ.) https://doi.org/10.21294/1814-4861-2021-20-2-5-12

Views: 2351


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)