РОЛЬ ЗАГРЯЗНЕНИЯ ВОЗДУХА ВЗВЕШЕННЫМИ ЧАСТИЦАМИ В ПАТОГЕНЕЗЕ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ
Аннотация
В обзоре освещены современные представления о роли загрязнения атмосферного воздуха взвешенными частицами (particulate matter, pM) в патогенезе онкологических заболеваний. Для этой цели были использованы материалы статей, индексированных в базах pubMed и РИНЦ. Рассмотрены результаты долговременного влияния pM в зависимости от их размера, происхождения, химического состава, концентрации в воздухе на возникновение и прогрессирование онкологических заболеваний. РМ с аэродинамическим диаметром ≤2,5 мкм признаны самыми опасными. Эпидемиологическими исследованиями установлено дозозависимое действие РМ на клетки. Повреждение генома клеток и эпигенетические изменения при действии РМ являются важным звеном патогенеза онкологических заболеваний. Систематизированные научные данные, особенно в виде формализованных описаний, способствуют понятию патогенеза онкологических заболеваний и могут быть использованы в практической медицине для оценки риска возникновения, ранней диагностики, прогноза и повышения эффективности лечения больных онкологическими заболеваниями.
Об авторах
А. Ф. КолпаковаРоссия
доктор медицинских наук, профессор, ведущий научный сотрудник лаборатории моделирования геоэкологических систем (совместно с ИВЭП СОРАН)
SPIN-код: 6318-0028. Author ID (Scopus): 57188760035
Россия, 630090, г. Новосибирск, ул. Академика Ржанова, 6
Р. Н. Шарипов
Россия
руководитель проектов»; старший преподаватель
SPIN-код: 1214-2918. Author ID (Scopus): 6603966277
Россия, 630058, г. Новосибирск, ул. Русская, 41/1
Россия, 630090, г. Новосибирск, ул. Пирогова, 2
О. А. Волкова
Россия
кандидат биологических наук, научный сотрудник лаборатории генной инженерии
SPIN-код: 8803-1300. Author ID (Scopus): 57206674279
Россия, 630090, г. Новосибирск, пр. Академика Лаврентьева, 10
Ф. А. Колпаков
Россия
кандидат биологических наук, заведующий лабораторией биоинформатики; технический директор
Author ID (Scopus): 7003530190
Россия, 630090, г. Новосибирск, ул. Академика Ржанова, 6
Россия, 630058, г. Новосибирск, ул. Русская, 41/1
Список литературы
1. Заридзе Д.Г., Каприн А.Д., Стилиди И.С. Динамика заболеваемости злокачественными новообразованиями и смертности от них в России. Вопросы онкологии. 2018; 64(5): 578–591.
2. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2016 году (заболеваемость и смертность). М., 2018; 250 с.
3. International Agency for Research on Cancer; World Health Organization. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon, France, 2016. 2019.
4. Мешков Н.А. Приоритетные факторы риска окружающей среды в развитии онкопатологии. Научный альманах. 2016; 5–3(19): 309–318.
5. Cohen A.J., Brauer M., Burnett R., Anderson H.R., Frostad J., Estep K., Balakrishnan K., Brunekreef B., Dandona L., Dandona R., Feigin V., Freedman G., Hubbell B., Jobling A., Kan H., Knibbs L., Liu Y., Martin R., Morawska L., Pope C.A. 3rd, Shin H., Straif K., Shaddick G., Thomas M., van Dingenen R., van Donkelaar A., Vos T., Murray C.J.L., Forouzanfar M.H. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017 May; 389(10082): 1907–18. doi: 10.1016/S0140-6736(17)30505-6.
6. Lelieveld J., Evans J.S., Fnais M., Giannadaki D., Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015 Sep 17; 525(7569): 367–71. doi: 10.1038/nature15371.
7. Jantzen K., Moller P., Karottki D.G., Olsen Y., Beko G., Clausen G., Hersoug L.G., Loft S. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells. Toxicology. 2016; 359–360: 11–18. doi: 10.1016/j.tox.2016.06.007.
8. Traboulsi H., Guerrina N., Iu M., Maysinger D., Ariya P., Baglole C.J. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter. Int J Mol Sci. 2017 Jan 24; 18(2): 243. doi: 10.3390/ijms18020243.
9. Рахманин Ю.А., Леванчук А.В. Гигиеническая оценка атмосферного воздуха в районах с различной степенью развития дорожноавтомобильного комплекса. Гигиена и санитария. 2016; 95(12): 1117–1121.
10. Jia Y.Y., Wang Q., Liu T. Toxicity Research of PM2.5 Compositions In Vitro. Int J Environ Res Public Health. 2017 Feb 26; 14(3): 232. doi: 10.3390/ijerph14030232.
11. Li K., Liang T., Wang L. Risk assessment of atmospheric heavy metals exposure in Baotou, a typical industrial city in northern China. Environ Geochem Health. 2016 Jun; 38(3): 843–53. doi: 10.1007/s10653-015-9765-1.
12. Трескова Ю.В. Проблемы нормирования мелкодисперсных частиц в России и за рубежом. Молодой ученый. 2017; 23: 17–19.
13. Yun Y., Gao R., Yue H., Guo L., Li G., Sang N. Sulfate Aerosols Promote Lung Cancer Metastasis by Epigenetically Regulating the Epithelial-to-Mesenchymal Transition (EMT). Environ Sci Technol. 2017 Oct 3; 51(19): 11401–11. doi: 10.1021/acs.est.7b02857.
14. Wong C.M., Tsang H., Lai H.K., Thomas G.N., Lam K.B., Chan K.P., Zheng Q., Ayres J.G., Lee S.Y., Lam T.H., Thach T.Q. Cancer Mortality Risks from Long-term Exposure to Ambient Fine Particle. Cancer Epidemiol Biomarkers Prev. 2016 May; 25(5): 839–45. doi: 10.1158/1055-9965.EPI-15-0626.
15. Lamichhane D.K., Kim H.C., Choi C.M., Shin M.H., Shim Y.M., Leem J.H., Ryu J.S., Nam H.S., Park S.M. Lung Cancer Risk and Residential Exposure to Air Pollution: A Korean Population-Based CaseControl Study. Yonsei Med. J. 2017; 58(6): 1111–1118. doi: 10.3349/ymj.2017.58.6.1111.
16. Wang Y., Li M., Wan X., Sun Y., Cheng K., Zhao X., Zheng Y., Yang G., Wang L. Spatiotemporal analysis of PM2.5 and pancreatic cancer mortality in China. Environ Res. 2018 Jul; 164: 132–139. doi: 10.1016/j.envres.2018.02.026.
17. Gharibvand L., Shavlik D., Ghamsary M., Beeson W.L., Soret S., Knutsen R., Knutsen S.F. The Association between Ambient Fine Particulate Air Pollution and Lung Cancer Incidence: Results from the AHSMOG-2 Study. Environ Health Perspect. 2017 Mar; 125(3): 378–384. doi: 10.1289/EHP124.
18. Nagel G., Stafoggia M., Pedersen M., Andersen Z.J., Galassi C., Munkenast J., Jaensch A., Sommar J., Forsberg B., Olsson D., Oftedal B., Krog N.H., Aamodt G., Pyko A., Pershagen G., Korek M., De Faire U., Pedersen N.L., Östenson C.G., Fratiglioni L., Sørensen M., Tjønneland A., Peeters P.H., Bueno-de-Mesquita B., Vermeulen R., Eeftens M., Plusquin M., Key T.J., Concin H., Lang A., Wang M., Tsai M.Y., Grioni S., Marcon A., Krogh V., Ricceri F., Sacerdote C., Ranzi A., Cesaroni G., Forastiere F., Tamayo-Uria I., Amiano P., Dorronsoro M., de Hoogh K., Beelen R., Vineis P., Brunekreef B., Hoek G., Raaschou-Nielsen O., Weinmayr G. Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Int J Cancer. 2018; 143(7): 1632–43. doi: 10.1002/ijc.31564.
19. VoPham T., Weaver M.D., Vetter C., Hart J.E., Tamimi R.M., Laden F., Bertrand K.A. Circadian Misalignment and Hepatocellular Carcinoma Incidence in the United States. Cancer Epidemiol Biomarkers Prev. 2018 Jul; 27(7): 719–727. doi: 10.1158/1055-9965.EPI-17-1052.
20. Pedersen M., Stafoggia M., Weinmayr G., Andersen Z.J., Galassi C., Sommar J., Forsberg B., Olsson D., Oftedal B., Krog N.H., Aamodt G., Pyko A., Pershagen G., Korek M., De Faire U., Pedersen N.L., Östenson C.G., Fratiglioni L., Sørensen M., Eriksen K.T., Tjønneland A., Peeters P.H., Bueno-de-Mesquita B., Vermeulen R., Eeftens M., Plusquin M., Key T.J., Jaensch A, Nagel G., Concin H., Wang M., Tsai M.Y., Grioni S., Marcon A., Krogh V., Ricceri F., Sacerdote C., Ranzi A., Cesaroni G., Forastiere F., Tamayo I., Amiano P., Dorronsoro M., Stayner L.T., Kogevinas M., Nieuwenhuijsen MJ, Sokhi R., de Hoogh K., Beelen R., Vineis P., Brunekreef B., Hoek G., Raaschou-Nielsen O. Is There an Association Between Ambient Air Pollution and Bladder Cancer Incidence? Analysis of 15 European Cohorts. Eur Urol Focus. 2018 Jan; 4(1): 113–120. doi: 10.1016/j.euf.2016.11.008.
21. Hart J.E., Bertrand K.A., DuPre N., James P., Vieira V.M., Tamimi R.M., Laden F. Long-term Particulate Matter Exposures during Adulthood and Risk of Breast Cancer Incidence in the Nurses’ Health Study II Prospective Cohort. Cancer Epidemiol Biomarkers Prev. 2016; 25(8): 1274–6. doi: 10.1158/1055-9965.EPI-16-0246.
22. Liu C., Guo H., Cheng X., Shao M., Wu C., Wang S., Li H., Wei L., Gao Y., Tan W., Cheng S., Wu T., Yu D., Lin D. Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells. Oncotarget. 2015 Oct 6; 6(30): 29428–39. doi: 10.18632/oncotarget.5005.
23. Liu X., Chen Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med. 2017; 15(1): 207. doi: 10.1186/s12967-017-1306-5.
24. Li R., Zhou R., Zhang J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol Lett. 2018 May; 15(5): 7506–14. doi: 10.3892/ol.2018.8355.
25. Cho C.C., Hsieh W.Y., Tsai C.H., Chen C.Y., Chang H.F., Lin C.S. In Vitro and In Vivo Experimental Studies of PM2.5 on Disease Progression. Int J Environ Res Public Health. 2018 Jul 1; 15(7): 1380. doi: 10.3390/ijerph15071380.
26. Ekoue D.N., He C., Diamond A.M., Bonini M.G. Manganese superoxide dismutase and glutathione peroxidase-1 contribute to the rise and fall of mitochondrial reactive oxygen species which drive oncogenesis. Biochim Biophys Acta Bioenerg. 2017 Aug; 1858(8): 628–32. doi: 10.1016/j.bbabio.2017.01.006.
27. Tan C., Lu S., Wang Y., Zhu Y., Shi T., Lin M., Deng Z., Wang Z., Song N., Li S., Yang P., Yang L., Liu Y., Chen Z., Xu K. Long-term exposure to high air pollution induces cumulative DNA damages in traffic policemen. Sci Total Environ. 2017 Sep; 593–594: 330–336. doi: 10.1016/j.scitotenv.2017.03.179.
28. Sas-Nowosielska H., Pawlas N. Heavy metals in the cell nucleus – role in pathogenesis. Acta Biochim Pol. 2015; 62(1): 7–13. doi: 10.18388/abp.2014_834.
29. Toyooka S., Mitsudomi T., Soh J., Aokage K., Yamane M., Oto T., Kiura K., Miyoshi S. Molecular oncology of lung cancer. Gen Thorac Cardiovasc Surg. 2011 Aug; 59(8): 527–37. doi: 10.1007/s11748-010-0743-3.
30. Zhou W., Tian D., He J., Wang Y., Zhang L., Cui L., Jia L., Zhang L., Li L., Shu Y., Yu S., Zhao J., Yuan X., Peng S. Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation. Oncotarget. 2016 Apr 12; 7(15): 20691–703. doi: 10.18632/oncotarget.7842.
31. Yang B., Chen D., Zhao H., Xiao C. The effects for PM2.5 exposure on non-small-cell lung cancer induced motility and proliferation. Springerplus. 2016 Dec 1; 5(1): 2059. doi: 10.1186/s40064-016-3734-8.
32. Zhou Y.H. RE: Fine Particle Pollution, Alanine Transaminase, and Liver Cancer: A Taiwanese Prospective Cohort Study (REVEAL-HBV). J Natl Cancer Inst. 2016 Aug 31; 109(1). doi: 10.1093/jnci/djw184.
33. Zhang Q., Luo Q., Yuan X., Chai L., Li D., Liu J., Lv Z. Atmospheric particulate matter2.5 promotes the migration and invasion of hepatocellular carcinoma cells. Oncol Lett. 2017 May; 13(5): 3445–50. doi: 10.3892/ol.2017.5947.
34. Deng H., Eckel S.P., Liu L., Lurmann F.W., Cockburn M.G., Gilliland F.D. Particulate matter air pollution and liver cancer survival. Int J Cancer. 2017 Aug 15; 141(4): 744–749. doi: 10.1002/ijc.30779.
35. Sancini G., Farina F., Battaglia C., Cifola I., Mangano E., Mantecca P., Camatini M., Palestini P. Health risk assessment for air pollutants: alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2.5). PLoS One. 2014 Oct 8; 9(10): e109685. doi: 10.1371/journal.pone.0109685.
36. Zhou Z., Liu Y., Duan F., Qin M., Wu F., Sheng W., Yang L., Liu J., He K. Transcriptomic Analyses of the Biological Effects of Airborne PM2.5 Exposure on Human Bronchial Epithelial Cells. PLoS One. 2015 Sep 18; 10(9): e0138267. doi: 10.1371/journal.pone.0138267.
37. Weichenthal S., Crouse D.L., Pinault L., Godri-Pollitt K., Lavigne E., Evans G., van Donkelaar A., Martin R.V., Burnett R.T. Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). Environ Res. 2016 Apr; 146: 92–9. doi: 10.1016/j.envres.2015.12.013.
38. Wan R., Mo Y., Zhang Z., Jiang M., Tang S., Zhang Q. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol. 2017 Sep 18; 14(1): 38. doi: 10.1186/s12989-017-0219-z.
39. Drifka C.R., Tod J., Loeffler A.G., Liu Y., Thomas G.J., Eliceiri K.W., Kao W.J. Periductal stromal collagen topology of pancreatic ductal adenocarcinoma differs from that of normal and chronic pancreatitis. Mod Pathol. 2015 Nov; 28(11): 1470–80. doi: 10.1038/modpathol.2015.97.
40. Окладникова Е.В., Рукша Т.Г. Роль микроокружения в развитии и прогрессии рака поджелудочной железы. Сибирский онкологический журнал. 2016; 15(3): 82–90. doi: 10.21294/1814-4861-2016-15-3-85-92.
41. Wei H., Liang F., Cheng W., Zhou R., Wu X., Feng Y., Wang Y. The mechanisms for lung cancer risk of PM2.5: Induction of epithelialmesenchymal transition and cancer stem cell properties in human non-small cell lung cancer cells. Environ Toxicol. 2017 Nov; 32(11): 2341–51. doi: 10.1002/tox.22437.
42. Лыков А.П., Кабаков А.В., Бондаренко Н.А., Повещенко О.В., Райтер Т.В., Казаков О.В., Стрункин Д.Н., Суровцева М.А., Повещенко А.Ф., Коненков В.И. Опухоль-ассоциированные мезенхимные стволовые клетки при химически индуцированном раке молочной железы у крыс Wistar. Сибирский онкологический журнал. 2019; 18(1): 56–64. doi: 10.21294/1814-4861-2019-18-1-56-64.
43. Lacerda L., Debeb B.G., Smith D., Larson R., Solley T., Xu W., Krishnamurthy S., Gong Y., Levy L.B., Buchholz T., Ueno N.T., Klopp A., Woodward W.A. Mesenchymal stem cells mediate the clinical phenotype of inflammatory breast cancer in a preclinical model. Breast Cancer Res. 2015 Mar 20; 17(1): 42. doi: 10.1186/s13058-015-0549-4.
44. Miyazono K., Ehata S., Koinuma D. Tumor-promoting functions of transforming growth factor-β in progression of cancer. Ups J Med Sci. 2012 May; 117(2): 143–52. doi: 10.3109/03009734.2011.638729.
45. Шевченко В.Е., Брюховецкий И.С., Никифорова З.Н., Ковалев С.В., Кудрявцев И.А., Арноцкая Н.Е. Трансформирующий фактор роста бета-1 в онкогенезе аденокарциномы легкого человека. Успехи молекулярной онкологии. 2017; 4(3): 67–74.
46. Deng X., Feng N., Zheng M., Ye X., Lin H., Yu X., Gan Z., Fang Z., Zhang H., Gao M., Zheng Z.J., Yu H., Ding W., Qian B. PM2.5 exposureinduced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochim Biophys Acta Gen Subj. 2017 Feb; 1861(2): 112–125. doi: 10.1016/j.bbagen.2016.11.009.
47. Рачковский К.В., Вторушин С.В., Степанов И.В., Наумов С.С., Завьялова М.В., Афанасьев С.Г. Роль процессов аутофагии и ангиогенеза при колоректальном раке. Сибирский онкологический журнал. 2017; 16(6): 86–92. doi: 10.21294/1814-4861-2017-16-6-86-92.
Рецензия
Для цитирования:
Колпакова А.Ф., Шарипов Р.Н., Волкова О.А., Колпаков Ф.А. РОЛЬ ЗАГРЯЗНЕНИЯ ВОЗДУХА ВЗВЕШЕННЫМИ ЧАСТИЦАМИ В ПАТОГЕНЕЗЕ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ. Сибирский онкологический журнал. 2021;20(2):102-109. https://doi.org/10.21294/1814-4861-2021-20-2-102-109
For citation:
Kolpakova A.F., Sharipov R.N., Volkova O.A., Kolpakov F.A. THE ROLE OF PARTICULATE MATTER AIR POLLUTION IN CANCER PATHOGENESIS. Siberian journal of oncology. 2021;20(2):102-109. (In Russ.) https://doi.org/10.21294/1814-4861-2021-20-2-102-109