Preview

Siberian journal of oncology

Advanced search

CYTOTOXIC PROPERTIES OF NANOSTRUCTURES BASED ON ALUMINUM OXIDE AND HYDROXIDE PHASES IN RELATION TO TUMOR CELLS

https://doi.org/10.21294/1814-4861-2021-20-4-73-83

Abstract

Background. Currently, the use of nanoparticles and nanostructures as components of tumor therapy is the subject of numerous scientific articles. To change the parameters of cell microenvironment in presence of nanoparticles and nanostructures is a promising approach to reducing the tumor cell viability. Aluminum hydroxides and oxides have a number of advantages over other particles due to their porous surface, low toxicity, and thermal stability.

The purpose of the study was to investigate the influence of the acid-base properties of aluminum hydroxide structures with different phase composition on the tumor cell viability (Hela, mda, pymt, a549, B16F10).

Material and methods. Aln/al nanoparticles were used as a precursor for obtaining structures with various phase compositions. The anoparticles were produced by electric explosion of an aluminum wire in a nitrogen atmosphere. Such nanoparticles interact with water at 60 °Ϲ, resulting in formation of porous nanostructures. They are agglomerates of nanosheets with a planar size of up to 200 nm and a thickness of 5 nm. The phase composition of the structures was varied by the calcination temperature. A change in the phase composition of nanostructures led to a change in the acid-base properties of their surface. To estimate the number of acidic and basic centers on the surface of nanostructures, the adsorption of Hammett indicators was used. The amount of adsorbed dyes was determined spectrophotometrically.

Results. It was found that the differences in the acid-base characteristics of the surface of the nanostructures led to a change in their antitumor activity. Γ-al2o3 had 6.5 times more basic centers than acidic ones, which determined its ability to exhibit more pronounced antacid properties, i.e. Longer to neutralize protons secreted by tumor cells. This sample had the highest antitumor activity against all tested cell lines.

Conclusion. The antitumor activity of synthesized structures was found to be related not only to an increase in the ph of the cell microenvironment, but also to the ability to maintain the alkalinity of the microenvironment for a longer time due to the adsorption of protons released by tumor cells.

About the Authors

A. S. Lozhkomoev
Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 PhD

 Researcher ID (WOS): O-3024-2013. Author ID (Scopus): 26664893000 

2/41, Akademicheskiy Ave., 634055, Tomsk, Russia



O. V. Bakina
Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 DSc, Researcher

Researcher ID (WOS): A-3184-2014. Author ID (Scopus): 57200860509 

2/41, Akademicheskiy Ave., 634055, Tomsk, Russia



S. O. Kazantsev
Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Junior Researcher

Researcher ID (WOS): A-9259-2019. Author ID (Scopus): 56985661000 

2/41, Akademicheskiy Ave., 634055, Tomsk, Russia



L. Yu. Ivanova
Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Junior Researcher

Researcher ID (WOS): E-5777-2014. Author ID (Scopus): 55793393700 

2/41, Akademicheskiy Ave., 634055, Tomsk, Russia



A. V. Avgustinovich
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

 MD, PhD, Senior Researcher, Department of Abdominal Oncology

Researcher ID (WOS): D-6062-2012. Author ID (Scopus): 56392965300

5, Kooperativny Per., 634009, Tomsk, Russia



S. G. Afanasyev
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

 MD, DSc, Professor, Head of the Department of Abdominal Oncology

Researcher ID: D-2084-2012. Author ID (Scopus): 21333316900 

5, Kooperativny Per., 634009, Tomsk, Russia



L. V. Spirina
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

 DSc, Senior Researcher, Laboratory of Tumor Biochemistry

Researcher ID (WOS): A-7760-2012. Author ID (Scopus): 36960462500 

5, Kooperativny Per., 634009, Tomsk, Russia



A. Yu. Dobrodeev
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

 MD, DSc, Leading Researcher, Department of Abdominal Oncology

Researcher ID (WOS): B-5644-2017. Author ID (Scopus): 24832974200 

5, Kooperativny Per., 634009, Tomsk, Russia



References

1. Davis M.E., Chen Z.G., Shin D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008 Sep; 7(9): 771–82. doi: 10.1038/nrd2614.

2. Cho Y., Lee J.B., Hong J. Controlled release of an anti-cancer drug from DNA structured nano-films. Sci Rep. 2014 Feb 12; 4: 4078. doi: 10.1038/srep04078.

3. Shu Y., Shu D., Haque F., Guo P. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nat Protoc. 2013 Sep; 8(9): 1635–59. doi: 10.1038/nprot.2013.097.

4. Hauert S., Bhatia S.N. Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends Biotechnol. 2014 Sep; 32(9): 448–55. doi: 10.1016/j.tibtech.2014.06.010.

5. Mikhaylov G., Klimpel D., Schaschke N., Mikac U., Vizovisek M., Fonovic M., Turk V., Turk B., Vasiljeva O. Selective targeting of tumor and stromal cells by a nanocarrier system displaying lipidated cathepsin B inhibitor. Angew Chem Int Ed Engl. 2014 Sep 15; 53(38): 10077–81. doi: 10.1002/anie.201402305.

6. Mikhaylov G., Mikac U., Magaeva A.A., Itin V.I., Naiden E.P., Psakhye I., Babes L., Reinheckel T., Peters C., Zeiser R., Bogyo M., Turk V., Psakhye S.G., Turk B., Vasiljeva O. Ferri-liposomes as an MRI-visible drugdelivery system for targeting tumours and their microenvironment. Nat Nanotechnol. 2011 Aug 7; 6(9): 594–602. doi: 10.1038/nnano.2011.112.

7. Kumar C.S., Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011 Aug 14; 63(9): 789–808. doi: 10.1016/j.addr.2011.03.008.

8. Verma A., Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010 Jan; 6(1): 12–21. doi: 10.1002/smll.200901158.

9. Patra H.K., Dasgupta A.K. Cancer cell response to nanoparticles: criticality and optimality. Nanomedicine. 2012 Aug; 8(6): 842–52. doi: 10.1016/j.nano.2011.10.009.

10. Petros R.A., DeSimone J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010 Aug; 9(8): 615–27. doi: 10.1038/nrd2591.

11. Li Y., Tian Y., Nie G. Antineoplastic activities of Gd@C(OH) nanoparticles: tumor microenvironment regulation. Sci China Life Sci. 2012 Oct; 55(10): 884–90. doi: 10.1007/s11427-012-4387-7.

12. Li M., Ren L., Li L., He P., Lan G., Zhang Y., Yang K. Cytotoxic Effect on Osteosarcoma MG-63 Cells by Degradation of Magnesium. J Materials Scien Technol. 2014; 30(9): 888–93. doi: 10.1016/j.jmst.2014.04.010.

13. Zhang Y., Ren L., Li M., Lin X., Zhao H., Yang K. Preliminary study on cytotoxic effect of biodegradation of magnesium on cancer cells. J Materials Scien Technol. 2012; 28(9): 769–72. doi: 10.1016/S1005-0302(12)60128-5.

14. Sonveaux P., Végran F., Schroeder T., Wergin M.C., Verrax J., Rabbani Z.N., De Saedeleer C.J., Kennedy K.M., Diepart C., Jordan B.F., Kelley M.J., Gallez B., Wahl M.L., Feron O., Dewhirst M.W. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008 Dec; 118(12): 3930–42. doi: 10.1172/JCI36843.

15. Gillies R.J., Raghunand N., Garcia-Martin M.L., Gatenby R.A. pH imaging. A review of pH measurement methods and applications in cancers. IEEE Eng Med Biol Mag. 2004; 23(5): 57–64. doi: 10.1109/memb.2004.1360409.

16. De Milito A., Canese R., Marino M.L., Borghi M., Iero M., Villa A., Venturi G., Lozupone F., Iessi E., Logozzi M., Della Mina P., Santinami M., Rodolfo M., Podo F., Rivoltini L., Fais S. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer. 2010 Jul 1; 127(1): 207–19. doi: 10.1002/ijc.25009.

17. Spugnini E.P., Buglioni S., Carocci F., Francesco M., Vincenzi B., Fanciulli M., Fais S. High dose lansoprazole combined with metronomic chemotherapy: a phase I/II study in companion animals with spontaneously occurring tumors. J Transl Med. 2014 Aug 21; 12: 225. doi: 10.1186/s12967-014-0225-y.

18. Meng H., Mai W.X., Zhang H., Xue M., Xia T., Lin S., Wang X., Zhao Y., Ji Z., Zink J.I., Nel A.E. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano. 2013; 7(2): 994–1005. doi: 10.1021/nn3044066.

19. Khawar I.A., Kim J.H., Kuh H.J. Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release. 2015 Mar 10; 201: 78–89. doi: 10.1016/j.jconrel.2014.12.018.

20. Kim S.S., Rait A., Kim E., Pirollo K.F., Chang E.H. A tumortargeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine. 2015 Feb; 11(2): 301–11. doi: 10.1016/j.nano.2014.09.005.

21. Kanamala M., Wilson W.R., Yang M., Palmer B.D., Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials. 2016 Apr; 85: 152–67. doi: 10.1016/j.biomaterials.2016.01.061.

22. Taylor S., Spugnini E.P., Assaraf Y.G., Azzarito T., Rauch C., Fais S. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist Updat. 2015 Nov; 23: 69–78. doi: 10.1016/j.drup.2015.08.004.

23. Walsh M., Fais S., Spugnini E.P., Harguindey S., Abu Izneid T., Scacco L., Williams P., Allegrucci C., Rauch C., Omran Z. Proton pump inhibitors for the treatment of cancer in companion animals. J Exp Clin Cancer Res. 2015 Sep 4; 34(1): 93. doi: 10.1186/s13046-015-0204-z.

24. Bakina O.V., Svarovskaya N.V., Glazkova E.A., Lozhkomoev A.S. Flower-shaped ALOOH nanostructures synthesized by the reaction of an AlN/Al composite nanopowder in water. Advanced Powder Technology. 2015; 26(6): 1512–19. doi: 10.1186/s13046-015-0204-z.

25. Lerner M.I., Pervikov A.V., Lozhkomoev A.S., Bakina O.V. Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Advanced Powder Technology. 2016; 295: 307–314. doi: 10.1016/j.powtec.2016.04.005.

26. Tsybulya S.V., Kryukova G.N. Nanocrystalline transition aluminas: Nanostructure and features of x-ray powder diffraction patterns of low-temperature Al2O3 polymorphs. Physical Review B. 2008; 77(2); 024112–024125. doi: 10.1103/PhysRevB.77.024112.

27. Zhang S., Li J., Lykotrafitis G., Bao G., Suresh S. Size-Dependent Endocytosis of Nanoparticles. Adv Mater. 2009; 21: 419–424. doi: 10.1002/adma.200801393.

28. Jiang W., Kim B.Y., Rutka J.T., Chan W.C. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008 Mar; 3(3): 145–50. doi: 10.1038/nnano.2008.30.


Review

For citations:


Lozhkomoev A.S., Bakina O.V., Kazantsev S.O., Ivanova L.Yu., Avgustinovich A.V., Afanasyev S.G., Spirina L.V., Dobrodeev A.Yu. CYTOTOXIC PROPERTIES OF NANOSTRUCTURES BASED ON ALUMINUM OXIDE AND HYDROXIDE PHASES IN RELATION TO TUMOR CELLS. Siberian journal of oncology. 2021;20(4):73-83. (In Russ.) https://doi.org/10.21294/1814-4861-2021-20-4-73-83

Views: 692


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)