DEVELOPMENT AND CHARACTERISATION OF 3D SOLID TUMOUR CELL MODELS FOR INDIVIDUALIZED CANCER TREATMENT
https://doi.org/10.21294/1814-4861-2021-20-5-58-74
Abstract
Background. To solve the problems of personalized medicine in oncology, preclinical studies based on the use of three-dimensional cellular models of tumors in vitro, including spheroids / tumoroids, are of great importance. They are an interesting tool for genetic, epigenetic, biomedical and pharmacological studies aiming to determine the most effective individual therapeutic approaches, since they allow modeling the dynamic evolution of a tumor disease from early stages to metastatic spread through interaction with the microenvironment.
The purpose of the study was to compare characteristic features of formation and spatial organization of spheroids, obtained from solid malignant tumors cells with various histogenesis: melanomas, soft tissue sarcomas and osteosarcomas, epithelial tumors.
Material and Methods. Solid tumor cell lines of patients who were treated from 2015 to 2021 were the basis for the creation of 3D-cell models. Fragments of tumor tissue were obtained intraoperatively: 15 samples of melanoma, 20 samples of soft tissue sarcomas and osteosarcomas, and 9 samples of epithelial tumors. All tumor cells were cultured for at least 10 passages. Methods of phase contrast, confocal microscopy, and histological techniques were used to study spheroids. Using ELISA methods and multiplex analysis, the supernatants of monolayer cell cultures and spheroids were studied for the presence of a wide range of biologically active substances that provide the processes of immunosuppression, invasion and metastasis.
Results. The use of low adhesion surfaces was proven to be preferable to obtain spheroids of a given seed concentration and size of interest. The average cultivation time of spheroids was 4.7 days, and the optimal seeding concentration was 10,000 cells per well, while the spheroid diameter varied from 300 to 1000 μm depending on the type of malignant cells: the largest spheroids formed melanoma cultures. In general, the efficiency of spheroid formation was 88.6 % (39 out of 44). The introduction of fibroblasts into the 3D construct led to increasing in the invasive potential of tumor cells, which was associated with the production of IL8 (rho=0.636, p=0.035), HGF (rho=0.850, p=0.004), SCF (rho=0.857, p=0.014), FST (rho=0.685, p=0.029), Prolactin (rho=0.810, p=0.015), PECAM1 (rho=0.788, p=0.004).
Conclusion. The technology of low-adhesive surfaces makes it possible to successfully create three-dimensional models of a tumor node from malignant tumors cells of various histogenesis. The colonization of a three-dimensional structure with fibroblasts enhances the biologically aggressive properties of tumor cells and demonstrates complex reciprocal interactions between the cellular elements of the tumor stroma and malignant cells, which brings the model closer to a real clinical situation.
About the Authors
A. B. DanilovaRussian Federation
PhD, Senior Researcher, Immunology Oncology Department,
68, Leningradskaya Street, Pesochniy, 197758, Saint-Petersburg
T. L. Nekhaeva
Russian Federation
MD, PhD, Senior Researcher, Immunology Oncology Department,
68, Leningradskaya Street, Pesochniy, 197758, Saint-Petersburg
N. A. Efremova
Russian Federation
Researcher, Immunology Oncology Department,
68, Leningradskaya Street, Pesochniy, 197758, Saint-Petersburg
M. A. Maydin
Russian Federation
Researcher, Department of Carcinogenesis and Oncogerontology,
68, Leningradskaya Street, Pesochniy, 197758, Saint-Petersburg
E. I. Fedoros
Russian Federation
PhD, Head of the Department of Carcinogenesis and Oncogerontology,
68, Leningradskaya Street, Pesochniy, 197758, Saint-Petersburg
I. A. Baldueva
Russian Federation
MD, DSc, Head of Immunology Oncology Department,
68, Leningradskaya Street, Pesochniy, 197758, Saint-Petersburg
References
1. Colella G., Fazioli F., Gallo M., De Chiara A., Apice G., Ruosi C., Cimmino A., de Nigris F. Sarcoma Spheroids and Organoids-Promising Tools in the Era of Personalized Medicine. Int J Mol Sci. 2018 Feb 21; 19(2): 615. doi: 10.3390/ijms19020615.
2. Zanoni M., Cortesi M., Zamagni A., Arienti C., Pignatta S., Tesei A. Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol. 2020 Jul 16; 13(1): 97. doi: 10.1186/s13045-020-00931-0.
3. Langhans S.A. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front Pharmacol. 2018 Jan 23; 9: 6. doi: 10.3389/fphar.2018.00006.
4. Egeblad M., Nakasone E.S., Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010 Jun 15; 18(6): 884–901. doi: 10.1016/j.devcel.2010.05.012.
5. Tabassum D.P., Polyak K. Tumorigenesis: it takes a village. Nat Rev Cancer. 2015 Aug; 15(8): 473–83. doi: 10.1038/nrc3971.
6. Bassi G., Grimaudo M.A., Panseri S., Montesi M. Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce In Vitro the Human Body Complexity. Int J Mol Sci. 2021; 22(3): 1195. doi: 10.3390/ijms22031195.
7. Sakalem M.E., De Sibio M.T., da Costa F.A.D.S., de Oliveira M. Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnol J. 2021 May; 16(5): e2000463. doi: 10.1002/biot.202000463.
8. Drost J., Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018 Jul; 18(7): 407–418. doi: 10.1038/s41568-018-0007-6.
9. Magin C.M., Alge D.L., Anseth K.S. Bio-inspired 3D microenvironments: a new dimension in tissue engineering. Biomed Mater. 2016 Mar 4; 11(2): 022001. doi: 10.1088/1748-6041/11/2/022001.
10. Gilazieva Z., Ponomarev A., Rutland C., Rizvanov A., Solovyeva V. Promising applications of tumor spheroids and organoids for personalized medicine. Cancers. 2020; 12(10): 1–19. doi: 10.3390/cancers12102727.
11. Freshney R.I. Culture of animal cells: a manual of basic technique and specialized applications. John Wiley Sons, Inc., Hoboken, New Jersey, USA. 6th ed., 2010. 732 p.
12. Danilov A.O., Larin S.S., Danilova A.B., Moiseenko V.M., Baldueva I.A., Kiselev S.L., Turkevich E.A., Barchuk A.S., Anisimov V.V., Gafton G.I., Kochnev V.A., Khanson K.P. An improved procedure for autologous gene-modified cancer vaccine preparation for active specific immunotherapy of disseminated solid tumors. Problem in Oncology. 2004; 50(2): 219–27.
13. Geraldo S., Simon A., Vignjevic D.M. Revealing the cytoskeletal organization of invasive cancer cells in 3D. J Vis Exp. 2013; (80): e50763. doi: 10.3791/50763.
14. Everitt B.S., Pickles A. Statistical Aspects of the Design and Analysis of Clinical Trials. Imperial College Press. 2004. 340 p.
15. Nakatzuji N. Studies on the Gastrulation of Amphibian Embryos: Cell Movement during Gastrulation in Xenopus laevis Embryos. Wilhelm Roux Arch. 1975; 178: 1–14.
16. Sutherland R.M., McCredie J.A., Inch W.R. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst. 1971 Jan; 46(1): 113–20.
17. Yuhas J.M., Tarleton A.E., Molzen K.B. Multicellular tumor spheroid formation by breast cancer cells isolated from different sites. Cancer Res. 1978 Aug; 38(8): 2486–91.
18. Katt M.E., Placone A.L., Wong A.D., Xu Z.S., Searson P.C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front Bioeng Biotechnol. 2016 Feb 12; 4: 12. doi: 10.3389/fbioe.2016.00012.
19. Weiswald L.B., Bellet D., Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015 Jan; 17(1): 1–15. doi: 10.1016/j.neo.2014.12.004.
20. Han S.J., Kwon S., Kim K.S. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int. 2021 Mar 4; 21(1): 152. doi: 10.1186/s12935-021-01853-8.
21. Chan H.F., Zhang Y., Ho Y.P., Chiu Y.L., Jung Y., Leong K.W. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep. 2013 Dec 10; 3: 3462. doi: 10.1038/srep03462.
22. Wrenn E., Huang Y., Cheung K. Collective metastasis: coordinating the multicellular voyage. Clin Exp Metastasis. 2021 Aug; 38(4): 373–399. doi: 10.1007/s10585-021-10111-0.
23. Smyrek I., Mathew B., Fischer S.C., Lissek S.M., Becker S., Stelzer E.H.K. E-cadherin, actin, microtubules and FAK dominate different spheroid formation phases and important elements of tissue integrity. Biol Open. 2019 Jan 24; 8(1): bio037051. doi: 10.1242/bio.037051.
24. Tannock I.F., Lee C.M., Tunggal J.K., Cowan D.S., Egorin M.J. Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res. 2002 Mar; 8(3): 878–84.
25. Belli C., Trapani D., Viale G., D'Amico P., Duso B.A., DellaVigna P., Orsi F., Curigliano G. Targeting the microenvironment in solid tumors. Cancer Treat Rev. 2018 Apr; 65: 22–32. doi: 10.1016/j.ctrv.2018.02.004.
26. Tzanakakis E.S., Hansen L.K., Hu W.S. The role of actin filaments and microtubules in hepatocyte spheroid self-assembly. Cell Motil Cytoskeleton. 2001 Mar; 48(3): 175–89. doi: 10.1002/1097-0169(200103)48:33.0.CO;2-2.
27. Yoshii Y., Waki A., Yoshida K., Kakezuka A., Kobayashi M., Namiki H., Kuroda Y., Kiyono Y., Yoshii H., Furukawa T., Asai T., Okazawa H., Gelovani J.G., Fujibayashi Y. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and wellregulated spheroid formation. Biomaterials. 2011 Sep; 32(26): 6052–8. doi: 10.1016/j.biomaterials.2011.04.076.
28. Raica M., Cimpean A.M., Ribatti D. Angiogenesis in pre-malignant conditions. Eur J Cancer. 2009 Jul; 45(11): 1924–34. doi: 10.1016/j. ejca.2009.04.007.
29. Szade A., Grochot-Przeczek A., Florczyk U., Jozkowicz A., Dulak J. Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life. 2015 Mar; 67(3): 145–59. doi: 10.1002/iub.1358.
30. van Dijk M., Göransson S.A., Strömblad S. Cell to extracellular matrix interactions and their reciprocal nature in cancer. Exp Cell Res. 2013 Jul 1; 319(11): 1663–70. doi: 10.1016/j.yexcr.2013.02.006.
31. Byrne H.M. Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer. 2010 Mar; 10(3): 221–30. doi: 10.1038/nrc2808.
32. Costa E.C., Gaspar V.M., Coutinho P., Correia I.J. Optimization of liquid overlay technique to formulate heterogenic 3D co-cultures models. Biotechnol Bioeng. 2014 Aug; 111(8): 1672–85. doi: 10.1002/bit.25210.
33. Friedrich J., Seidel C., Ebner R., Kunz-Schughart L.A. Spheroidbased drug screen: considerations and practical approach. Nat Protoc. 2009; 4(3): 309–24. doi: 10.1038/nprot.2008.226.
34. Shao H., Moller M., Wang D., Ting A., Boulina M., Liu Z.J. A Novel Stromal Fibroblast-Modulated 3D Tumor Spheroid Model for Studying Tumor-Stroma Interaction and Drug Discovery. J Vis Exp. 2020; (156). doi: 10.3791/60660.
35. Weydert Z., Lal-Nag M., Mathews-Greiner L., Thiel C., Cordes H., Küpfer L., Guye P., Kelm J.M., Ferrer M. A 3D Heterotypic Multicellular Tumor Spheroid Assay Platform to Discriminate Drug Effects on Stroma versus Cancer Cells. SLAS Discov. 2020; 25(3): 265–276. doi: 10.1177/2472555219880194.
36. Pinto B., Henriques A.C., Silva P.M.A., Bousbaa H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics. 2020 Dec 6; 12(12): 1186. doi: 10.3390/pharmaceutics12121186.
37. Biffi G., Tuveson D.A. Diversity and Biology of Cancer-Associated Fibroblasts. Physiol Rev. 2021 Jan; 101(1): 147–176. doi: 10.1152/physrev.00048.2019.
38. Dzobo K. Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic. OMICS. 2020 Apr; 24(4): 175–179. doi: 10.1089/omi.2020.0019.
39. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4; 144(5): 646–74. doi: 10.1016/j.cell.2011.02.013.
40. Öhlund D., Elyada E., Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med. 2014 Jul; 211(8): 1503–23. doi: 10.1084/ jem.20140692.
41. Fiori M.E., Di Franco S., Villanova L., Bianca P., Stassi G., De Maria R. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer. 2019 Mar 30; 18(1): 70. doi: 10.1186/s12943-019-0994-2.
42. Denton A.E., Roberts E.W., Fearon D.T. Stromal Cells in the Tumor Microenvironment. Adv Exp Med Biol. 2018; 1060: 99–114. doi: 10.1007/978-3-319-78127-3_6.
Review
For citations:
Danilova A.B., Nekhaeva T.L., Efremova N.A., Maydin M.A., Fedoros E.I., Baldueva I.A. DEVELOPMENT AND CHARACTERISATION OF 3D SOLID TUMOUR CELL MODELS FOR INDIVIDUALIZED CANCER TREATMENT. Siberian journal of oncology. 2021;20(5):58-74. (In Russ.) https://doi.org/10.21294/1814-4861-2021-20-5-58-74