Preview

Siberian journal of oncology

Advanced search

Intratumor morphologic and molecular genetic heterogeneity in astrocytomas of different grade of malignancy in the material from the first operation

https://doi.org/10.21294/1814-4861-2021-20-6-55-68

Abstract

Introduction. Intratumor heterogeneity is one of the key reasons for unfavourable prognosis in malignant tumors. Astrocytic tumors are known to develop therapy resistance inevitably during the course of disease. One of possible reason is tumor heterogeneity. Purpose. The aim of this work was to assess the intratumor morphologic and molecular heterogeneity in diffuse astrocytoma, anaplastic astrocytomas and primary glioblastomas. Material and methods. We conducted morphologic (n=22) and molecular-genetic (n=8) analysis of surgical specimens obtained from primarily operated glioblastoma giv (gb), anaplastic astrocytomas giii (aa) and diffuse astrocytoma gii (da) patients aged 18 years and older in whom total or subtotal tumor resection was performed. Tissue sampling for the analysis was performed from 5 equidistant areas of each tumor. Morphologic diagnosis was established according to who classification of central nervous system tumors (2007/2016). Mgmt, c-kit, top2a, pdgfr-α, ercc1, vegf genes mrnaexpression was assessed by rt-pcr. Idh1 and idh2 mutational status was evaluated by allele-specific pcr. Results. Morphologic heterogeneity was evident in 72,7 % tumors (16/22) overall. Heterogeneity was observed in 68,8 % (11/16) of gb, 80 % (4/5) of aa and in the only case of da. In 50 % of cases at least 3 different morphologic variants were seen in different areas of the tumor. This morphologic heterogeneity presented as the combination of different grades of anaplasia (gii – giv) in one tumor. Molecular profile was assessed in 48 expression analysis of genes: mgmt, c-kit, top2a, pdgfr-α, ercc1, vegf from 8 patients. Intratumoral molecular heterogeneity was revealed in 41,7 % of cases (20/48). Conclusion. The presence of intratumoral heterogeneity should be taken into account during surgery for adequate tumor sampling for histologic and molecular analysis which is critical for proper assessment of prognosis and following treatment planning.

About the Authors

D. E. Matsko
Saint-Petersburg Clinical Scientific And Practical Center For Specialised Types Of Medical Care (Oncological); Saint-Petersburg State University; Sankt-Petersburg Medico-Social Institute; Polenov Russian Neurosurgical Institute – The Branch Of Almazov NMRC
Russian Federation

 MD, DSc, Professor 

68a, Leningradskaya Street, 197758, St. Petersburg, Pesochny, Russia

7/9, University Embankment, 199034, St. Petersburg, Russia

72а, Kondratyevsky Avenue, 195271, St. Petersburg, Russia

12, Mayakovskogo Street, 191014, St.Petersburg, Russia



M. V. Matsko
Saint-Petersburg Clinical Scientific And Practical Center For Specialised Types Of Medical Care (Oncological); Saint-Petersburg State University; Sankt-Petersburg Medico-Social Institute
Russian Federation

 MD, DSc, Senior Researcher

SPIN-код: 2014-2268. AuthorID (РИНЦ): 918790 Researcher ID (WOS): W-9626-2018 

68a, Leningradskaya Street, 197758, St. Petersburg, Pesochny, Russia

7/9, University Embankment, 199034, St. Petersburg, Russia

72а, Kondratyevsky Avenue, 195271, St. Petersburg, Russia



A. O. Baksheeva
Committee On Public Health Of The Government Of St. Petersburg Rauhfus Children's Clinical Center
Russian Federation

 MD, Neurosurgeon

8, Ligovsky Avenue, 191036, St. Petersburg, Russia



E. N. Imyanitov
North-Western State Medical University Named After I.I. Mechnikov; N.N. Petrov National Medical Research Center Of Oncology; St. Petersburg State Pediatric Medical University Of Healthcare Of The Russian Federation
Russian Federation

 MD, DSc, Professor, Corresponding Member of Russian Academy of Sciences, Department of Biology of Tumor Growth

Author ID (Scopus): 7003644486 

41, Kirochnaya Street, 191015, St. Petersburg, Russia

68, Leningradskaya Street, 197758, Pesochny, St. Petersburg, Russia

2, Litovskaya Street, 194100, St. Petersburg, Russia



A. Yu. Ulitin
Polenov Russian Neurosurgical Institute – The Branch Of Almazov NMRC; North-Western State Medical University Named After I.I. Mechnikov
Russian Federation

 MD, DSc, Professor; Professor of the Department of Neurosurgery named after Professor A.L Polenov 

12, Mayakovskogo Street, 191014, St.Petersburg, Russia

41, Kirochnaya Street, 191015, St. Petersburg, Russia



V. M. Moiseenko
Saint-Petersburg Clinical Scientific And Practical Center For Specialised Types Of Medical Care (Oncological); Sankt-Petersburg Medico-Social Institute
Russian Federation

 MD, DSc, Professor, Director 

68a, Leningradskaya Street, 197758, St. Petersburg, Pesochny, Russia

72а, Kondratyevsky Avenue, 195271, St. Petersburg, Russia



K. V. Shelekhova
Saint-Petersburg Clinical Scientific And Practical Center For Specialised Types Of Medical Care (Oncological); Sankt-Petersburg Medico-Social Institute
Russian Federation

MD, DSc, Professor of the Department of Pathological Anatomy of the Faculty of Additional Professional Education

Researcher ID (WOS): O-5495-2015 

68a, Leningradskaya Street, 197758, St. Petersburg, Pesochny, Russia

72а, Kondratyevsky Avenue, 195271, St. Petersburg, Russia



N. M. Volkov
Saint-Petersburg Clinical Scientific And Practical Center For Specialised Types Of Medical Care (Oncological); Sankt-Petersburg Medico-Social Institute
Russian Federation

 MD, PhD, Head of Chemotherapy and Radiosurgery Department 

68a, Leningradskaya Street, 197758, St. Petersburg, Pesochny, Russia

72а, Kondratyevsky Avenue, 195271, St. Petersburg, Russia



A. G. Ievleva
N.N. Petrov National Medical Research Center Of Oncology; St. Petersburg State Pediatric Medical University Of Healthcare Of The Russian Federation
Russian Federation

 PhD, Senior Researcher, Department of Biology of Tumor Growth

Researcher ID (WOS): P-8305-2016. Author ID (Scopus): 6506417697 

68, Leningradskaya Street, 197758, Pesochny, St. Petersburg, Russia

2, Litovskaya Street, 194100, St. Petersburg, Russia



V. I. Tiurin
N.N. Petrov National Medical Research Center Of Oncology
Russian Federation

 Laboratory Assistant – Researcher, Laboratory of Molecular Oncology 

68, Leningradskaya Street, 197758, Pesochny, St. Petersburg, Russia



S. S. Sklyar
Polenov Russian Neurosurgical Institute – The Branch Of Almazov NMRC
Russian Federation

 MD, Research Fellow, Neurosurgeon  

12, Mayakovskogo Street, 191014, St.Petersburg, Russia



A. A. Zrelov
Polenov Russian Neurosurgical Institute – The Branch Of Almazov NMRC
Russian Federation

 MD, PhD, Researcher, Neurosurgeon  

12, Mayakovskogo Street, 191014, St.Petersburg, Russia



A. S. Morozova
Saint-Petersburg State University
Russian Federation

 student of the Medical Faculty 

7/9, University Embankment, 199034, St. Petersburg, Russia



References

1. Virchow R. Cellular pathology. As based upon physiological and pathological histology. Lecture XVI--Atheromatous affection of arteries. 1858. Nutr Rev. 1989 Jan; 47(1): 23–5. doi: 10.1111/j.1753-4887.1989.tb02747.x.

2. Strauss Y., Globus J. Spongioblastoma with unusually rapid growth following decompression. Neurol. Bull. 1918; 1: 273–279.

3. Zemskaja A.G. Multiforme Glioblastoma of the Brain. Leningrad, 1976. 178 p. (in Russian).

4. Smirnov L.I. Morphology of the nervous system, general normal and pathological histology. Мoscow, 1935. 256 p. (in Russian).

5. Geymanovich A.I., Smirnova L.I. Tumors of the central nervous system. State honey. published. 1936. P. 401–421. (in Russian).

6. Vaskin I.S., Vasil’ev A.A. Pathohistological characteristics of tumors of the central nervous system. Modern Surgery. 1934; 6: 506–526. (in Russian).

7. Savenko S.N. Multiforme Spongioblastoma. Tumors of the Central Nervous System. 1936. P. 424–443. (in Russian).

8. Scherer H., Gliomstudien. I.I. Uber die Grenzen der Zelldiagnostik der Gehirngeschwulsten, gargestellt am Beispiel des «Glioblastoma multiforme ganglioides. Virchow s, Arch. 1935; 294: 795–822.

9. Scherer H. The forms of growth in gliomas and their practical significance. Brain. 1940; 63: 11–35.

10. Hegi M.E., Diserens A.C., Gorlia T., Hamou M.F., de Tribolet N., Weller M., Kros J.M., Hainfellner J.A., Mason W., Mariani L., Bromberg J.E., Hau P., Mirimanoff R.O., Cairncross J.G., Janzer R.C., Stupp R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005 Mar 10; 352(10): 997–1003. doi: 10.1056/NEJMoa043331.

11. Chinot O.L., Barrié M., Fuentes S., Eudes N., Lancelot S., Metellus P., Muracciole X., Braguer D., Ouafik L., Martin P.M., Dufour H., Figarella-Branger D. Correlation between O6-methylguanine-DNA methyltransferase and survival in inoperable newly diagnosed glioblastoma patients treated with neoadjuvant temozolomide. J Clin Oncol. 2007 Apr 20; 25(12): 1470–5. doi: 10.1200/JCO.2006.07.4807.

12. Watanabe T., Nobusawa S., Kleihues P., Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009 Apr; 174(4): 1149–53. doi: 10.2353/ajpath.2009.080958.

13. Kim Y.H., Nobusawa S., Mittelbronn M., Paulus W., Brokinkel B., Keyvani K., Sure U., Wrede K., Nakazato Y., Tanaka Y., Vital A., Mariani L., Stawski R., Watanabe T., De Girolami U., Kleihues P., Ohgaki H. Molecular classification of low-grade diffuse gliomas. Am J Pathol. 2010 Dec; 177(6): 2708–14. doi: 10.2353/ajpath.2010.100680.

14. Labussière M., Idbaih A., Wang X.W., Marie Y., Boisselier B., Falet C., Paris S., Laffaire J., Carpentier C., Crinière E., Ducray F., El Hallani S., Mokhtari K., Hoang-Xuan K., Delattre J.Y., Sanson M. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology. 2010; 74(23): 1886–90. doi: 10.1212/WNL.0b013e3181e1cf3a.

15. Kim Y.H., Nobusawa S., Mittelbronn M., Paulus W., Brokinkel B. Keyvani K., Sure U., Wrede K., Nakazato Y., Tanaka Y., Vital A., Mariani L., Stawski R., Watanabe T., De Girolami U., Kleihues P., Ohgaki H. Molecular classification of low-grade diffuse gliomas. Am J Pathol. 2010 Dec; 177(6): 2708–14. doi: 10.2353/ajpath.2010.100680.

16. Hartmann C., Hentschel B., Tatagiba M., Schramm J., Schnell O., Seidel C., Stein R., Reifenberger G., Pietsch T., von Deimling A., Loeffler M., Weller M. Molecular markers in low-grade gliomas: predictive or prognostic? Clin Cancer Res. 2011; 17(13): 4588–99. doi: 10.1158/1078-0432.CCR-10-3194.

17. Meyer M., Reimand J., Lan X., Head R., Zhu X., Kushida M., Bayani J., Pressey J.C., Lionel A.C., Clarke I.D., Cusimano M., Squire J.A., Scherer S.W., Bernstein M., Woodin M.A., Bader G.D., Dirks P.B. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci USA. 2015; 112(3): 851–6. doi: 10.1073/pnas.1320611111.

18. Parker N.R., Hudson A.L., Khong P., Parkinson J.F., Dwight T., Ikin R.J., Zhu Y., Cheng Z.J., Vafaee F., Chen J., Wheeler H.R., Howell V.M. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Sci Rep. 2016 Mar 4; 6: 22477. doi: 10.1038/srep22477.

19. Qazi M.A., Vora P., Venugopal C., Sidhu S.S., Moffat J., Swanton C., Singh S.K. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol. 2017 Jul 1; 28(7): 1448–56. doi: 10.1093/annonc/mdx169.

20. Juillerat-Jeanneret L., Bernasconi C.C., Bricod C., Gros S., Trepey S., Benhattar J., Janzer R.C. Heterogeneity of human glioblastoma: glutathione-S-transferase and methylguanine-methyltransferase. Cancer Invest. 2008 Jul; 26(6): 597–609. doi: 10.1080/07357900802072913.

21. Hamilton M.G., Roldán G., Magliocco A., McIntyre J.B., Parney I., Easaw J.C. Determination of the methylation status of MGMT in different regions within glioblastoma multiforme. J Neurooncol. 2011 Apr; 102(2): 255–60. doi: 10.1007/s11060-010-0307-5.

22. Mitiushkina N.V., Iyevleva A.G., Poltoratskiy A.N., Ivantsov A.O., Togo A.V., Polyakov I.S., Orlov S.V., Matsko D.E., Novik V.I., Imyanitov E.N. Detection of EGFR mutations and EML4-ALK rearrangements in lung adenocarcinomas using archived cytological slides. Cancer Cytopathol. 2013 Jul; 121(7): 370–6. doi: 10.1002/cncy.21281.

23. Zhurid I.S. Towards the doctrine of spongioblastomas. In the collection dedicated to the 30th anniversary of S.N. Davidenkov, 1936; P. 193–194. (in Russian).

24. Man'kovskii B.N., Savenko S.N. On the correlation between the clinical and the structure of gliomas. Soviet Psychoneurology. 1937; 8: 43–49. (in Russian).

25. Rotenberg S.I. Characterization of multiforme spongioblastomas. II Soviet Union Congress of Neuropathologists and Psychiatrists. Vol. IV. 1937; 331–355. (in Russian).

26. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008 Oct 23; 455(7216): 1061–8. doi: 10.1038/nature07385.

27. Johnson B.E., Mazor T., Hong C., Barnes M., Aihara K., McLean C.Y., Fouse S.D., Yamamoto S., Ueda H., Tatsuno K., Asthana S., Jalbert L.E., Nelson S.J., Bollen A.W., Gustafson W.C., Charron E., Weiss W.A., Smirnov I.V., Song J.S., Olshen A.B., Cha S., Zhao Y., Moore R.A., Mungall A.J., Jones S.J.M., Hirst M., Marra M.A., Saito N., Aburatani H., Mukasa A., Berger M.S., Chang S.M., Taylor B.S., Costello J.F. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014 Jan 10; 343(6167): 189–193. doi: 10.1126/science.1239947.

28. Yip S., Miao J., Cahill D.P., Iafrate A.J., Aldape K., Nutt C.L., Louis D.N. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res. 2009 Jul 15; 15(14): 4622–9. doi: 10.1158/1078-0432.CCR-08-3012.

29. Little S.E., Popov S., Jury A., Bax D.A., Doey L., Al-Sarraj S., Jurgensmeier J.M., Jones C. Receptor tyrosine kinase genes amplified in glioblastoma exhibit a mutual exclusivity in variable proportions reflective of individual tumor heterogeneity. Cancer Res. 2012 Apr 1; 72(7): 1614–20. doi: 10.1158/0008-5472.CAN-11-4069.

30. Sottoriva A., Spiteri I., Piccirillo S.G., Touloumis A., Collins V.P., Marioni J.C., Curtis C., Watts C., Tavaré S. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 2013 Mar 5; 110(10): 4009–14. doi: 10.1073/pnas.1219747110.

31. Soeda A., Hara A., Kunisada T., Yoshimura S., Iwama T., Park D.M. The evidence of glioblastoma heterogeneity. Sci Rep. 2015 Jan 27; 5: 7979. doi: 10.1038/srep07979.

32. Reinartz R., Wang S., Kebir S., Silver D.J., Wieland A., Zheng T., Küpper M., Rauschenbach L., Fimmers R., Shepherd T.M., Trageser D., Till A., Schäfer N., Glas M., Hillmer A.M., Cichon S., Smith A.A., Pietsch T., Liu Y., Reynolds B.A., Yachnis A., Pincus D.W., Simon M., Brüstle O., Steindler D.A., Scheffler B. Functional Subclone Profiling for Prediction of Treatment-Induced Intratumor Population Shifts and Discovery of Rational Drug Combinations in Human Glioblastoma. Clin Cancer Res. 2017 Jan 15; 23(2): 562–574. doi: 10.1158/1078-0432.CCR-15-2089.

33. Yan H., Parsons D.W., Jin G., McLendon R., Rasheed B.A., Yuan W., Kos I., Batinic-Haberle I., Jones S., Riggins G.J., Friedman H., Friedman A., Reardon D., Herndon J., Kinzler K.W., Velculescu V.E., Vogelstein B., Bigner D.D. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009 Feb 19; 360(8): 765–73. doi: 10.1056/NEJMoa0808710.

34. Parkinson J.F., Wheeler H.R., Clarkson A., McKenzie C.A., Biggs M.T., Little N.S., Cook R.J., Messina M., Robinson B.G., McDonald K.L. Variation of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation in serial samples in glioblastoma. J Neurooncol. 2008 Mar; 87(1): 71–8. doi: 10.1007/s11060-007-9486-0.

35. Cao V.T., Jung T.Y., Jung S., Jin S.G., Moon K.S., Kim I.Y., Kang S.S., Park C.S., Lee K.H., Chae H.J. The correlation and prognostic significance of MGMT promoter methylation and MGMT protein in glioblastomas. Neurosurgery. 2009 Nov; 65(5): 866–75; discussion 875. doi: 10.1227/01.NEU.0000357325.90347.A1.

36. Akgül S., Patch A.M., D’Souza R.C.J., Mukhopadhyay P., Nones K., Kempe S., Kazakoff S.H., Jeffree R.L., Stringer B.W., Pearson J.V., Waddell N., Day B.W. Intratumoural Heterogeneity Underlies Distinct Therapy Responses and Treatment Resistance in Glioblastoma. Cancers (Basel). 2019; 11(2): 190. doi: 10.3390/cancers11020190.

37. Lemée J.M., Clavreul A., Menei P. Intratumoral heterogeneity in glioblastoma: don’t forget the peritumoral brain zone. Neuro Oncol. 2015 Oct; 17(10): 1322–32. doi: 10.1093/neuonc/nov119.

38. Parker N.R., Khong P., Parkinson J.F., Howell V.M., Wheeler H.R. Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol. 2015 Mar 3; 5: 55. doi: 10.3389/fonc.2015.00055.

39. Hemmati H.D., Nakano I., Lazareff J.A., Masterman-Smith M., Geschwind D.H., Bronner-Fraser M., Kornblum H.I. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003 Dec 9; 100(25): 15178–83. doi: 10.1073/pnas.2036535100.

40. Singh S.K., Clarke I.D., Terasaki M., Bonn V.E., Hawkins C., Squire J., Dirks P.B. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003 Sep 15; 63(18): 5821–8.

41. Ding Y., Hubert C.G., Herman J., Corrin P., Toledo C.M., SkuttKakaria K., Vazquez J., Basom R., Zhang B., Risler J.K., Pollard S.M., Nam D.H., Delrow J.J., Zhu J., Lee J., DeLuca J., Olson J.M., Paddison P.J. Cancer-Specific requirement for BUB1B/BUBR1 in human brain tumor isolates and genetically transformed cells. Cancer Discov. 2013 Feb; 3(2): 198–211. doi: 10.1158/2159-8290.CD-12-0353.

42. Herman J.A., Toledo C.M., Olson J.M., DeLuca J.G., Paddison P.J. Molecular pathways: regulation and targeting of kinetochore-microtubule attachment in cancer. Clin Cancer Res. 2015 Jan 15; 21(2): 233–9. doi: 10.1158/1078-0432.CCR-13-0645.

43. Lee E., Pain M., Wang H., Herman J.A., Toledo C.M., DeLuca J.G., Yong R.L., Paddison P., Zhu J. Sensitivity to BUB1B Inhibition Defines an Alternative Classification of Glioblastoma. Cancer Res. 2017; 77(20): 5518–5529. doi: 10.1158/0008-5472.CAN-17-0736.

44. Berghoff A.S., Kiesel B., Widhalm G., Rajky O., Ricken G., Wöhrer A., Dieckmann K., Filipits M., Brandstetter A., Weller M., Kurscheid S., Hegi M.E., Zielinski C.C., Marosi C., Hainfellner J.A., Preusser M., Wick W. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 2015 Aug; 17(8): 1064–75. doi: 10.1093/neuonc/nou307.

45. Yang I., Tihan T., Han S.J., Wrensch M.R., Wiencke J., Sughrue M.E., Parsa A.T. CD8+ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival. J Clin Neurosci. 2010 Nov; 17(11): 1381–5. doi: 10.1016/j.jocn.2010.03.031.

46. Hussain S.F., Yang D., Suki D., Aldape K., Grimm E., Heimberger A.B. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol. 2006 Jul; 8(3): 261–79. doi: 10.1215/15228517-2006-008.

47. Donson A.M., Birks D.K., Schittone S.A., KleinschmidtDeMasters B.K., Sun D.Y., Hemenway M.F., Handler M.H., Waziri A.E., Wang M., Foreman N.K. Increased immune gene expression and immune cell infiltration in high-grade astrocytoma distinguish long-term from short-term survivors. J Immunol. 2012 Aug 15; 189(4): 1920–7. doi: 10.4049/jimmunol.1103373.

48. Li B., Severson E., Pignon J.C., Zhao H., Li T., Novak J., Jiang P., Shen H., Aster J.C., Rodig S., Signoretti S., Liu J.S., Liu X.S. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016 Aug 22; 17(1): 174. doi: 10.1186/s13059-016-1028-7.

49. Huang B., Zhang H., Gu L., Ye B., Jian Z., Stary C., Xiong X. Advances in Immunotherapy for Glioblastoma Multiforme. J Immunol Res. 2017; 2017: 3597613. doi: 10.1155/2017/3597613.

50. Daniel P.M., Filiz G., Tymms M.J., Ramsay R.G., Kaye A.H., Stylli S.S., Mantamadiotis T. Intratumor MAPK and PI3K signaling pathway heterogeneity in glioblastoma tissue correlates with CREB signaling and distinct target gene signatures. Exp Mol Pathol. 2018 Aug; 105(1): 23–31. doi: 10.1016/j.yexmp.2018.05.009.

51. Neftel C., Laffy J., Filbin M.G., Hara T., Shore M.E., Rahme G.J., Richman A.R., Silverbush D., Shaw M.L., Hebert C.M., Dewitt J., Gritsch S., Perez E.M., Gonzalez Castro L.N., Lan X., Druck N., Rodman C., Dionne D., Kaplan A., Bertalan M.S., Small J., Pelton K., Becker S., Bonal D., Nguyen Q.D., Servis R.L., Fung J.M., Mylvaganam R., Mayr L., Gojo J., Haberler C., Geyeregger R., Czech T., Slavc I., Nahed B.V., Curry W.T., Carter B.S., Wakimoto H., Brastianos P.K., Batchelor T.T., StemmerRachamimov A., Martinez-Lage M., Frosch M.P., Stamenkovic I., Riggi N., Rheinbay E., Monje M., Rozenblatt-Rosen O., Cahill D.P., Patel A.P., Hunter T., Verma I.M., Ligon K.L., Louis D.N., Regev A., Bernstein B.E., Tirosh I., Suvà M.L. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell. 2019 Aug 8; 178(4): 835–849.e21. doi: 10.1016/j.cell.2019.06.024.

52. Wenger A., Ferreyra Vega S., Kling T., Bontell T.O., Jakola A.S., Carén H. Intratumor DNA methylation heterogeneity in glioblastoma: implications for DNA methylation-based classification. Neuro Oncol. 2019 May 6; 21(5): 616–627. doi: 10.1093/neuonc/noz011.

53. Pang L., Hu J., Li F., Yuan H., Yan M., Liao G., Xu L., Pang B., Ping Y., Xiao Y., Li X. Discovering Rare Genes Contributing to Cancer Stemness and Invasive Potential by GBM Single-Cell Transcriptional Analysis. Cancers (Basel). 2019 Dec 16; 11(12): 2025. doi: 10.3390/cancers11122025.

54. Lee E., Yong R.L., Paddison P., Zhu J. Comparison of glioblastoma (GBM) molecular classification methods. Semin Cancer Biol. 2018 Dec; 53: 201–211. doi: 10.1016/j.semcancer.2018.07.006.


Review

For citations:


Matsko D.E., Matsko M.V., Baksheeva A.O., Imyanitov E.N., Ulitin A.Yu., Moiseenko V.M., Shelekhova K.V., Volkov N.M., Ievleva A.G., Tiurin V.I., Sklyar S.S., Zrelov A.A., Morozova A.S. Intratumor morphologic and molecular genetic heterogeneity in astrocytomas of different grade of malignancy in the material from the first operation. Siberian journal of oncology. 2021;20(6):55-68. (In Russ.) https://doi.org/10.21294/1814-4861-2021-20-6-55-68

Views: 767


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)