Preview

Siberian journal of oncology

Advanced search

Influence of initial platinum-based chemotherapy on levels of He-4 protein and VEGF-A in primary tumors and metastases from ovarian cancer

https://doi.org/10.21294/1814-4861-2021-20-6-69-77

Abstract

Introduction. Recently, the he-4 protein has received great attention due to its diagnostic and prognostic abilities in epithelial ovarian cancer. In addition to its diagnostic value, this protein is involved in the pathogenesis of ovarian cancer. Another significant pathogenetic factor is the vascular endothelial growth factor (vegf) which plays a key role in neoangiogenesis. The purpose of the study focused on the analysis of he-4 and vegf-a levels in tissues of ovarian cancer, in healthy contralateral ovaries and in common metastatic tumors in the omentum and peritoneum to determine the place and role of these tumor markers at the stages of carcinogenesis. Material and methods. The study was performed using the abovementioned tissues of 93 patients with t2-3nхm0-1 ovarian cancer. 51 patients underwent surgery followed by chemotherapy. 42 patients received initial neoadjuvant chemotherapy followed by surgery and adjuvant cytostatic therapy. Tissue samples from 17 patients with benign diseases were used as the control for determining the reference values for he-4 and vegf-a. A comparison was made between groups of patients with and without neoadjuvant therapy, as well as in groups of patients depending on the effectiveness of cytostatic treatment. Results. The levels of he-4 in primary and metastatic tissues affected and not affected by cancer were initially elevated in patients with ovarian cancer. The chemotherapy effectiveness directly correlated with the level of he-4 reduction, which did not change or increased in tumors resistant to medical treatment. The level of vegf-a significantly differed in cancer and non-cancer tissues, which indicated its significant pathogenetic effect not “before”, but at the stages of morphological malignization. The dynamics of vegf-a decrease in this study did not depend on the chemotherapy effect. Conclusion. The he-4 marker is a pathognomonic factor in the development of ovarian cancer, preceding morphological signs of malignancy and reflecting the effectiveness of chemotherapy, while vegf-a is most likely a consequence of the cancer development.

About the Authors

E. M. Frantsiyants
National Medical Research Centre for Oncology
Russian Federation

 DSc, Professor, Deputy General Director for Science

SPIN-код: 9427-9928 

63, 14-Th Liniya, 344037, Rostov-On-Don, Russia



T. I. Moiseenko
National Medical Research Centre for Oncology
Russian Federation

 MD, DSc, Professor, Leading Researcher, Section of Reproductive Tumors

SPIN-код: 6341-0549 

63, 14-Th Liniya, 344037, Rostov-On-Don, Russia



D. Yu. Yakubova
National Medical Research Centre for Oncology
Russian Federation

 Postgraduate, Department of Gynecological Oncology 

63, 14-Th Liniya, 344037, Rostov-On-Don, Russia



N. D. Cheryarina
National Medical Research Centre for Oncology
Russian Federation

 Doctor-laboratory assistant, Laboratory of Study of Tumor Pathogenesis

SPIN-код: 2189-3404 

63, 14-Th Liniya, 344037, Rostov-On-Don, Russia



A. P. Menshenina
National Medical Research Centre for Oncology
Russian Federation

 MD, PhD, Leading Researcher, Section of Reproductive Tumors

SPIN-код: 6845-4794 

63, 14-Th Liniya, 344037, Rostov-On-Don, Russia



E. V. Verenikina
National Medical Research Centre for Oncology
Russian Federation

 MD, PhD, Head of Department of Gynecological Oncology

SPIN-код: 6610-7824 

63, 14-Th Liniya, 344037, Rostov-On-Don, Russia



M. L. Adamyan
National Medical Research Centre for Oncology
Russian Federation

 MD, PhD, Researcher, Section of Reproductive Tumors

SPIN-код: 9929-3414 

63, 14-Th Liniya, 344037, Rostov-On-Don, Russia



References

1. Zhang L.Y., Chen Y., Jia J., Zhu X., He Y., Wu L.M. MiR-27a promotes EMT in ovarian cancer through active Wnt/β-catenin signalling by targeting FOXO1. Cancer Biomark. 2019; 24(1): 31–42. doi: 10.3233/CBM-181229.

2. James N.E., Chichester C., Ribeiro J.R. Beyond the Biomarker: Understanding the Diverse Roles of Human Epididymis Protein 4 in the Pathogenesis of Epithelial Ovarian Cancer. Front Oncol. 2018 Apr 24; 8: 124. doi: 10.3389/fonc.2018.00124.

3. Vaughan S., Coward J.I., Bast R.C.Jr., Berchuck A., Berek J.S., Brenton J.D., Coukos G., Crum C.C., Drapkin R., Etemadmoghadam D., Friedlander M., Gabra H., Kaye S.B., Lord C.J., Lengyel E., Levine D.A., McNeish I.A., Menon U., Mills G.B., Nephew K.P., Oza A.M., Sood A.K., Stronach E.A., Walczak H., Bowtell D.D., Balkwill F.R. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 2011 Sep 23; 11(10): 719–25. doi: 10.1038/nrc3144.

4. Gomes A.M., Carron E.C., Mills K.L., Dow A.M., Gray Z., Fecca C.R., Lakey M.A., Carmeliet P., Kittrell F., Medina D., Machado H.L. Stromal Gas6 promotes the progression of premalignant mammary cells. Oncogene. 2019 Apr; 38(14): 2437–2450. doi: 10.1038/s41388-018-0593-5.

5. Gavalas N.G., Liontos M., Trachana S.P., Bagratuni T., Arapinis C., Liacos C., Dimopoulos M.A., Bamias A. Angiogenesis-related pathways in the pathogenesis of ovarian cancer. Int J Mol Sci. 2013 Jul 30; 14(8): 15885–909. doi: 10.3390/ijms140815885.

6. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010 Sep; 177(3): 1053–64. doi: 10.2353/ajpath.2010.100105.

7. Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 1989 Aug; 8(2): 98–101.

8. Yeung T.L., Leung C.S., Yip K.P., Au Yeung C.L., Wong S.T., Mok S.C. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am J Physiol Cell Physiol. 2015 Oct 1; 309(7): C444–56. doi: 10.1152/ajpcell.00188.2015.

9. Li J., Chen H., Mariani A., Chen D., Klatt E., Podratz K., Drapkin R., Broaddus R., Dowdy S., Jiang S.W. HE4 (WFDC2) Promotes Tumor Growth in Endometrial Cancer Cell Lines. Int J Mol Sci. 2013 Mar 15; 14(3): 6026–43. doi: 10.3390/ijms14036026.

10. Zhu L., Zhuang H., Wang H., Tan M., Schwab C.L., Deng L., Gao J., Hao Y., Li X., Gao S., Liu J., Lin B. Overexpression of HE4 (human epididymis protein 4) enhances proliferation, invasion and metastasis of ovarian cancer. Oncotarget. 2016 Jan 5; 7(1): 729–44. doi: 10.18632/oncotarget.6327.

11. Hamed E.O., Ahmed H., Sedeek O.B., Mohammed A.M., AbdAlla A.A., Abdel Ghaffar H.M. Significance of HE4 estimation in comparison with CA125 in diagnosis of ovarian cancer and assessment of treatment response. Diagn Pathol. 2013 Jan 23; 8: 11. doi: 10.1186/1746-1596-8-11.

12. Karlsen M.A., Høgdall E.V., Christensen I.J., Borgfeldt C., Kalapotharakos G., Zdrazilova-Dubska L., Chovanec J., Lok C.A., Stiekema A., Mutz-Dehbalaie I., Rosenthal A.N., Moore E.K., Schodin B.A., Sumpaico W.W., Sundfeldt K., Kristjansdottir B., Zapardiel I., Høgdall C.K. A novel diagnostic index combining HE4, CA125 and age may improve triage of women with suspected ovarian cancer – An international multicenter study in women with an ovarian mass. Gynecol Oncol. 2015; 138(3): 640–6. doi: 10.1016/j.ygyno.2015.06.021.

13. Kong X., Chang X., Cheng H., Ma R., Ye X., Cui H. Human epididymis protein 4 inhibits proliferation of human ovarian cancer cells via the mitogen-activated protein kinase and phosphoinositide 3-kinase/AKT pathways. Int J Gynecol Cancer. 2014 Mar; 24(3): 427–36. doi: 10.1097/IGC.0000000000000078.

14. Wang A., Jin C., Tian X., Wang Y., Li H. Knockdown of HE4 suppresses aggressive cell growth and malignant progression of ovarian cancer by inhibiting the JAK/STAT3 pathway. Biol Open. 2019 Sep 2; 8(9): bio043570. doi: 10.1242/bio.043570.

15. Ribeiro J.R., Gaudet H.M., Khan M., Schorl C., James N.E., Oliver M.T., DiSilvestro P.A., Moore R.G., Yano N. Human Epididymis Protein 4 Promotes Events Associated with Metastatic Ovarian Cancer via Regulation of the Extracelluar Matrix. Front Oncol. 2018; 7: 332. doi: 10.3389/fonc.2017.00332.

16. James N.E., Beffa L., Oliver M.T., Borgstadt A.D., Emerson J.B., Chichester C.O., Yano N., Freiman R.N., DiSilvestro P.A., Ribeiro J.R. Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes. Oncotarget. 2019 May 21; 10(36): 3315–3327.

17. Bowtell D.D., Böhm S., Ahmed A.A., Aspuria P.J., Bast R.C.Jr., Beral V., Berek J.S., Birrer M.J., Blagden S., Bookman M.A., Brenton J.D., Chiappinelli K.B., Martins F.C., Coukos G., Drapkin R., Edmondson R., Fotopoulou C., Gabra H., Galon J., Gourley C., Heong V., Huntsman D.G., Iwanicki M., Karlan B.Y., Kaye A., Lengyel E., Levine D.A., Lu K.H., McNeish I.A., Menon U., Narod S.A., Nelson B.H., Nephew K.P., Pharoah P., Powell D.J.Jr., Ramos P., Romero I.L., Scott C.L., Sood A.K., Stronach E.A., Balkwill F.R. Rethinking ovarian cancer II: reducing mortality from highgrade serous ovarian cancer. Nat Rev Cancer. 2015 Nov; 15(11): 668–79. doi: 10.1038/nrc4019.

18. Miranda F., Mannion D., Liu S., Zheng Y., Mangala L.S., Redo-ndo C., Herrero-Gonzalez S., Xu R., Taylor C., Chedom D.F., Karaminejadranjbar M., Albukhari A., Jiang D., Pradeep S., Rodriguez-Aguayo C., Lopez-Berestein G., Salah E., Abdul Azeez K.R., Elkins J.M., Campo L., Myers K.A., Klotz D., Bivona S., Dhar S., Bast R.C.Jr., Saya H., Choi H.G., Gray N.S., Fischer R., Kessler B.M., Yau C., Sood A.K., Motohara T., Knapp S., Ahmed A.A. Salt-Inducible Kinase 2 Couples Ovarian Cancer Cell Metabolism with Survival at the Adipocyte-Rich Metastatic Niche. Cancer Cell. 2016 Aug 8; 30(2): 273–289. doi: 10.1016/j.ccell.2016.06.020.

19. Villert A.B., Kolomiets L.A., Yunusova N.V., Ivanova A.A. Ascites as a subject of studies in ovarian cancer. Siberian journal of oncology. 2019; 18(1): 116–123. (in Russian). doi: 10.21294/1814-4861-2019-18-1-116-123.

20. Kit O.I., Frantsiyants E.M., Moiseenko T.I., Verenikina E.V., Cheryarina N.D., Kozlova L.S., Pogorelova Yu.A. Growth factors of VEGF and FGF 21 family in blood serum in the ovarian cancer dynamics. Sovremennye Problemy Nauki i Obrazovaniya. 2017; 1. URL: https://science-education.ru/ru/article/view?id=25898 (cited: 06.05.2020). (in Russian).

21. Weidle U.H., Birzele F., Kollmorgen G., Rueger R. Mechanisms and Targets Involved in Dissemination of Ovarian Cancer. Cancer Genomics Proteomics. 2016 11–12; 13(6): 407–423. doi: 10.21873/cgp.20004.

22. Motohara T., Masuda K., Morotti M., Zheng Y., El-Sahhar S., Chong K.Y., Wietek N., Alsaadi A., Karaminejadranjbar M., Hu Z., Artibani M., Gonzalez L.S., Katabuchi H., Saya H., Ahmed A.A. An evolving story of the metastatic voyage of ovarian cancer cells: cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene. 2019 Apr; 38(16): 2885–98. doi: 10.1038/s41388-018-0637-x.

23. Foley O.W., Rauh-Hain J.A., del Carmen M.G. Recurrent epithelial ovarian cancer: an update on treatment. Oncology (Williston Park). 2013; 27: 288–94.

24. Gerber S.A., Rybalko V.Y., Bigelow C.E., Lugade A.A., Foster T.H., Frelinger J.G., Lord E.M. Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth. Am J Pathol. 2006 Nov; 169(5): 1739–52. doi: 10.2353/ajpath.2006.051222.


Review

For citations:


Frantsiyants E.M., Moiseenko T.I., Yakubova D.Yu., Cheryarina N.D., Menshenina A.P., Verenikina E.V., Adamyan M.L. Influence of initial platinum-based chemotherapy on levels of He-4 protein and VEGF-A in primary tumors and metastases from ovarian cancer. Siberian journal of oncology. 2021;20(6):69-77. (In Russ.) https://doi.org/10.21294/1814-4861-2021-20-6-69-77

Views: 488


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)