Preview

Сибирский онкологический журнал

Расширенный поиск

Cтруктурные перестройки генов NTRK: характеристика, методы детекции и таргетная терапия онкологических заболеваний

https://doi.org/10.21294/1814-4861-2021-20-6-120-133

Полный текст:

Аннотация

Введение. В ноябре 2018 г. Fdaодобрило применение ларотректениба для лечения распространенных солидных опухолей, содержащих слияния с генами NTRK других генов, в августе 2019 г. – энтректиниб. Цель исследования – представить современные данные о структуре и функциях генов NTRK, частоте встречаемости перестроек с их участием, последствиях от их возникновения на клеточном уровне, методах детекции таких перестроек, а также о таргетных препаратах, применяемых при наличии химерных генов NTRK. Материал и методы. Поиск статей осуществлялся в базах данных pubmed NcBi, Web of science, scopus. Результаты. Продукты генов NTRK являются рецепторами к нейротрофинам, и их высокая экспрессия в норме наблюдается только в узком диапазоне типов тканей. Внутрихромосомные или межхромосомные перестройки приводят к значительному повышению уровня экспрессии химерного гена благодаря попаданию под сильный промотор гена-партнера. Высокая транскрипционная активность такого гена наряду с постоянным включением киназной активности белкового продукта приводят к включению метаболических путей, отвечающих за уход клетки от апоптоза и нарушение регуляции клеточного цикла. Встречаемость химерных генов NTRK варьирует между различными типами опухолей, с наиболее высокой (до 90 %) – при редко встречающихся онкологических заболеваниях (секреторная карцинома молочной железы, секреторная карцинома слюнных желез, врождённая мезобластическая нефрома, детская фибросаркома). Новые таргетные препараты (ларотректениб и энтректиниб) имеют высокую эффективность подавления роста опухоли, несущей перестройки NTRK, вне зависимости от типа опухоли. В связи с этим актуальными представляются внедрение новых высокоточных методов детекции химерных генов NTRK, а также исследование механизмов развития резистентности с предположением способов ее преодоления. Заключение. Перестройки генов NTRK встречаются достаточно часто при различных видах онкологии и являются эффективной мишенью для современных таргетных препаратов.

Об авторах

А. А. Кечин
Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук; Новосибирский государственный университет
Россия

 кандидат биологических наук, младший научный сотрудник лаборатории фармакогеномики

SPIN-код: 9252-8834. Researcher ID: K-2411-2017. Author ID (Scopus): 55377180600

 Россия, 630090, г. Новосибирск, пр. ак. Лаврентьева, 8 

 Россия, 630090, г. Новосибирск, ул. Пирогова, 2 



А. И. Андриянова
Новосибирский государственный университет
Россия

 бакалавр 

 Россия, 630090, г. Новосибирск, ул. Пирогова, 2 



М. Л. Филипенко
Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук; Новосибирский государственный университет
Россия

 заведующий лабораторией фармакогеномики

SPIN-код: 4025-0533. Researcher ID: AAU-9552-2020. Author ID (Scopus): 8714462300

 Россия, 630090, г. Новосибирск, пр. ак. Лаврентьева, 8 

 Россия, 630090, г. Новосибирск, ул. Пирогова, 2 



Список литературы

1. Pulciani S., Santos E., Lauver A.V., Long L.K., Aaronson S.A., Barbacid M. Oncogenes in solid human tumours. Nature. 1982 Dec 9; 300(5892): 539–42. doi: 10.1038/300539a0.

2. Barbacid M. The TRK family of neurotrophin receptors. J Neurobiol. 1994 Nov; 25(11): 1386–403. doi: 10.1002/neu.480251107.

3. Martin-Zanca D., Oskam R., Mitra G., Copeland T., Barbacid M. Molecular and biochemical characterization of the human TRK protooncogene. Mol Cell Biol. 1989 Jan; 9(1): 24–33. doi: 10.1128/mcb.9.1.24-33.

4. Klein R., Jing S.Q., Nanduri V., O’Rourke E., Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991 Apr 5; 65(1): 189–97. doi: 10.1016/0092-8674(91)90419-y.

5. Kaplan D.R., Hempstead B.L., Martin-Zanca D., Chao M.V., Parada L.F. The TRK proto-oncogene product: a signal transducing receptor for nerve growth factor. Science. 1991; 252(5005): 554–8. doi: 10.1126/science.1850549.

6. Huang E.J., Reichardt L.F. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003; 72: 609–42. doi: 10.1146/annurev.biochem.72.121801.161629.

7. Amatu A., Sartore-Bianchi A., Bencardino K., Pizzutilo E.G., Tosi F., Siena S. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann Oncol. 2019 Nov 1; 30. doi: 10.1093/annonc/mdz383.

8. Kaplan D.R., Martin-Zanca D., Parada L.F. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature. 1991 Mar 14; 350(6314): 158–60. doi: 10.1038/350158a0.

9. Soppet D., Escandon E., Maragos J., Middlemas D.S., Reid S.W., Blair J., Burton L.E., Stanton B.R., Kaplan D.R., Hunter T., Nikolics K., Parada L.F. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell. 1991 May 31; 65(5): 895–903. doi: 10.1016/0092-8674(91)90396-g.

10. Naito Y., Lee A.K., Takahashi H. Emerging roles of the neurotrophin receptor TrkC in synapse organization. Neurosci Res. 2017; 116: 10–17. doi: 10.1016/j.neures.2016.09.009.

11. Ip N.Y., Stitt T.N., Tapley P., Klein R., Glass D.J., Fandl J., Greene L.A., Barbacid M., Yancopoulos G.D. Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron. 1993 Feb; 10(2): 137–49. doi: 10.1016/0896-6273(93)90306-c.

12. Heymach Jr J.V., Shooter E.M. The biosynthesis of neurotrophin heterodimers by transfected mammalian cells. J Biol Chem. 1995 May 19; 270(20): 12297–304. doi: 10.1074/jbc.270.20.12297.

13. Mahadeo D., Kaplan L., Chao M.V., Hempstead B.L. High affinity nerve growth factor binding displays a faster rate of association than p140trk binding. Implications for multi-subunit polypeptide receptors. J Biol Chem. 1994 Mar 4; 269(9): 6884–91.

14. Deinhardt K., Chao M.V. Trk receptors. Handbook of Experimental Pharmacology. 2014; P. 103–19. doi.org/10.1007/978-3-642-45106-5_5.

15. Cocco E., Scaltriti M., Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018 Dec; 15(12): 731–47. doi: 10.1038/s41571-018-0113-0.

16. Cunningham M.E., Greene L.A. A function-structure model for NGF-activated TRK. EMBO J. 1998; 17(24): 7282–93. doi: 10.1093/emboj/17.24.7282.

17. Reichardt L.F. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci. 2006; 361(1473): 1545–64. doi: 10.1098/rstb.2006.1894.

18. Hsiao S.J., Zehir A., Sireci A.N., Aisner D.L. Detection of Tumor NTRK Gene Fusions to Identify Patients Who May Benefit from Tyrosine Kinase (TRK) Inhibitor Therapy. J Mol Diagn. 2019; 21(4): 553–71. doi: 10.1016/j.jmoldx.2019.03.008.

19. Hechtman J.F., Benayed R., Hyman D.M., Drilon A., Zehir A., Frosina D., Arcila M.E., Dogan S., Klimstra D.S., Ladanyi M., Jungbluth A.A. Pan-Trk Immunohistochemistry Is an Efficient and Reliable Screen for the Detection of NTRK Fusions. Am J Surg Pathol. 2017 Nov; 41(11): 1547–51. doi: 10.1097/PAS.0000000000000911.

20. Gatalica Z., Xiu J., Swensen J., Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol. 2019 Jan; 32(1): 147–53. doi: 10.1038/s41379-018-0118-3.

21. Amatu A., Sartore-Bianchi A., Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open. 2016 Mar 18; 1(2). doi: 10.1136/esmoopen-2015-000023.

22. Drilon A., Laetsch T.W., Kummar S., DuBois S.G., Lassen U.N., Demetri G.D., Nathenson M., Doebele R.C., Farago A.F., Pappo A.S., Turpin B., Dowlati A., Brose M.S., Mascarenhas L., Federman N., Berlin J., El-Deiry W.S., Baik C., Deeken J., Boni V., Nagasubramanian R., Taylor M., Rudzinski E.R., Meric-Bernstam F., Sohal D.P.S., Ma P.C., Raez L.E., Hechtman J.F., Benayed R., Ladanyi M., Tuch B.B., Ebata K., Cruickshank S., Ku N.C., Cox M.C., Hawkins D.S., Hong D.S., Hyman D.M. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med. 2018 Feb 22; 378(8): 731–9. doi: 10.1056/NEJMoa1714448.

23. Drilon A., Li G., Dogan S., Gounder M., Shen R., Arcila M., Wang L., Hyman D.M., Hechtman J., Wei G., Cam N.R., Christiansen J., Luo D., Maneval E.C., Bauer T., Patel M., Liu S.V., Ou S.H., Farago A., Shaw A., Shoemaker R.F., Lim J., Hornby Z., Multani P., Ladanyi M., Berger M., Katabi N., Ghossein R., Ho A.L. What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC). Ann Oncol. 2016; 27(5): 920–6. doi: 10.1093/annonc/mdw042.

24. Halalsheh H., McCarville M.B., Neel M., Reynolds M., Cox M.C., Pappo A.S. Dramatic bone remodeling following larotrectinib administration for bone metastasis in a patient with TRK fusion congenital mesoblastic nephroma. Pediatr Blood Cancer. 2018 Oct; 65(10). doi: 10.1002/pbc.27271.

25. Davis J.L., Lockwood C.M., Albert C.M., Tsuchiya K., Hawkins D.S., Rudzinski E.R. Infantile NTRK-associated Mesenchymal Tumors. Pediatr Dev Pathol. 2018 Jan-Feb; 21(1): 68–78. doi: 10.1177/1093526617712639.

26. Krings G., Joseph N.M., Bean G.R., Solomon D., Onodera C., Talevich E., Yeh I., Grenert J.P., Hosfield E., Crawford E.D., Jordan R.C., van Zante A., Zaloudek C., Shin S.J., Chen Y.Y. Genomic profiling of breast secretory carcinomas reveals distinct genetics from other breast cancers and similarity to mammary analog secretory carcinomas. Mod Pathol. 2017 Aug; 30(8): 1086–99. doi: 10.1038/modpathol.2017.32.

27. Laé M., Fréneaux P., Sastre-Garau X., Chouchane O., SigalZafrani B., Vincent-Salomon A. Secretory breast carcinomas with ETV6-NTRK3 fusion gene belong to the basal-like carcinoma spectrum. Mod Pathol. 2009 Feb; 22(2): 291–8. doi: 10.1038/modpathol.2008.184.

28. Vasudev P., Onuma K. Secretory breast carcinoma: unique, triplenegative carcinoma with a favorable prognosis and characteristic molecular expression. Arch Pathol Lab Med. 2011; 135(12): 1606–10. doi: 10.5858/arpa.2010-0351-RS.

29. Skálová A., Vanecek T., Sima R., Laco J., Weinreb I., PerezOrdonez B., Starek I., Geierova M., Simpson R.H., Passador-Santos F., Ryska A., Leivo I., Kinkor Z., Michal M. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol. 2010; 34(5): 599–608. doi: 10.1097/PAS.0b013e3181d9efcc.

30. Skalova A., Vanecek T., Martinek P., Weinreb I., Stevens T.M. , Simpson R.H.W., Hyrcza M., Rupp N.J., Baneckova M., Michal M. Jr., Slouka D., Svoboda T., Metelkova A., Etebarian A., Pavelka J., Potts S.J., Christiansen J., Steiner P., Michal M. Molecular Profiling of Mammary Analog Secretory Carcinoma Revealed a Subset of Tumors Harboring a Novel ETV6-RET Translocation: Report of 10 Cases. Am J Surg Pathol. 2018 Feb; 42(2): 234–46. doi: 10.1097/PAS.0000000000000972.

31. Dogan S., Wang L., Ptashkin R.N., Dawson R.R., Shah J.P., Sherman E.J., Tuttle R. M., Fagin J.A., Klimstra D.S., Katabi N., Ghossein R.A. Mammary analog secretory carcinoma of the thyroid gland: A primary thyroid adenocarcinoma harboring ETV6-NTRK3 fusion. Mod Pathol. 2016; 29: 985–95. https://doi.org/10.1038/modpathol.2016.115

32. Knezevich S.R., Garnett M.J., Pysher T.J., Beckwith J.B., Grundy P.E., Sorensen P.H. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 1998 Nov 15; 58(22): 5046–8.

33. Church A.J., Calicchio M.L., Nardi V., Skalova A., Pinto A., Dillon D.A., Gomez-Fernandez C.R., Manoj N., Haimes J.D., Stahl J.A., Dela Cruz F.S., Tannenbaum-Dvir S., Glade-Bender J.L., Kung A.L., DuBois S.G., Kozakewich H.P., Janeway K.A., Perez-Atayde A.R., Harris M.H. Recurrent EML4-NTRK3 fusions in infantile fibrosarcoma and congenital mesoblastic nephroma suggest a revised testing strategy. Mod Pathol. 2018 Mar; 31(3): 463–73. doi: 10.1038/modpathol.2017.127.

34. Sheng W.Q., Hisaoka M., Okamoto S., Tanaka A., Meis-Kindblom J.M., Kindblom L.G., Ishida T., Nojima T., Hashimoto H. Congenitalinfantile fibrosarcoma. A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffin-embedded tissues. Am J Clin Pathol. 2001; 115(3): 348–55. doi: 10.1309/3H24-E7T7-V37G-AKKQ.

35. Wong V., Pavlick D., Brennan T., Yelensky R., Crawford J., Ross J.S., Miller V.A., Malicki D., Stephens P.J., Ali S.M., Ahn H. Evaluation of a Congenital Infantile Fibrosarcoma by Comprehensive Genomic Profiling Reveals an LMNA-NTRK1 Gene Fusion Responsive to Crizotinib. J Natl Cancer Inst. 2015 Nov 12; 108(1). doi: 10.1093/jnci/djv307.

36. Tannenbaum-Dvir S., Glade Bender J.L., Church A.J., Janeway K.A., Harris M.H., Mansukhani M.M., Nagy P.L., Andrews S.J., Murty V.V., Kadenhe-Chiweshe A., Connolly E.P., Kung A.L., Dela Cruz F.S. Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma. Cold Spring Harb Mol Case Stud. 2015 Oct; 1(1). doi: 10.1101/mcs.a000471.

37. Wu G., Diaz A.K., Paugh B.S., Rankin S.L., Ju B., Li Y., Zhu X., Qu C., Chen X., Zhang J., Easton J., Edmonson M., Ma X., Lu C., Nagahawatte P., Hedlund E., Rusch M., Pounds S., Lin T., Onar-Thomas A., Huether R., Kriwacki R., Parker M., Gupta P., Becksfort J., Wei L., Mulder H.L., Boggs K., Vadodaria B., Yergeau D., Russell J.C., Ochoa K., Fulton R.S., Fulton L.L., Jones C., Boop F.A., Broniscer A., Wetmore C., Gajjar A., Ding L., Mardis E.R., Wilson R.K., Taylor M.R., Downing J.R., Ellison D.W., Zhang J., Baker S.J. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet. 2014 May; 46(5): 444–50. doi: 10.1038/ng.2938.

38. Ferguson S.D., Zhou S., Huse J.T., de Groot J.F., Xiu J., Subramaniam D.S., Mehta S., Gatalica Z., Swensen J., Sanai N., Spetzler D., Heimberger A.B. Targetable Gene Fusions Associate With the IDH WildType Astrocytic Lineage in Adult Gliomas. J Neuropathol Exp Neurol. 2018; 77(6): 437–42. doi: 10.1093/jnen/nly022.

39. Prasad M.L., Vyas M., Horne M.J., Virk R.K., Morotti R., Liu Z., Tallini G., Nikiforova M.N., Christison-Lagay E.R., Udelsman R., Dinauer C.A., Nikiforov Y.E. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer. 2016; 122(7): 1097–107. doi: 10.1002/cncr.29887.

40. Vaishnavi A., Capelletti M., Le A.T., Kako S., Butaney M., Ercan D., Mahale S., Davies K.D., Aisner D.L., Pilling A.B., Berge E.M., Kim J., Sasaki H., Park S., Kryukov G., Garraway L.A., Hammerman P.S., Haas J., Andrews S.W., Lipson D., Stephens P.J., Miller V.A., Varella-Garcia M., Jänne P.A., Doebele R.C. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013 Nov; 19(11): 1469–72. doi: 10.1038/nm.3352.

41. Ardini E., Menichincheri M., Banfi P., Bosotti R., De Ponti C., Pulci R., Ballinari D., Ciomei M., Texido G., Degrassi A., Avanzi N., Amboldi N., Saccardo M.B., Casero D., Orsini P., Bandiera T., Mologni L., Anderson D., Wei G., Harris J., Vernier J.M., Li G., Felder E., Donati D., Isacchi A., Pesenti E., Magnaghi P., Galvani A. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016 Apr; 15(4): 628–39. doi: 10.1158/1535-7163.MCT-15-0758.

42. Drilon A., Siena S., Ou S.I., Patel M., Ahn M.J., Lee J., Bauer T.M., Farago A.F., Wheler J.J., Liu S.V., Doebele R., Giannetta L., Cerea G., Marrapese G., Schirru M., Amatu A., Bencardino K., Palmeri L., SartoreBianchi A., Vanzulli A., Cresta S., Damian S., Duca M., Ardini E., Li G., Christiansen J., Kowalski K., Johnson A.D., Patel R., Luo D., ChowManeval E., Hornby Z., Multani P.S., Shaw A.T., De Braud F.G. Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017 Apr; 7(4): 400–9. doi: 10.1158/2159-8290.CD-16-1237.

43. Menichincheri M., Ardini E., Magnaghi P., Avanzi N., Banfi P., Bossi R., Buffa L., Canevari G., Ceriani L., Colombo M., Corti L., Donati D., Fasolini M., Felder E., Fiorelli C., Fiorentini F., Galvani A., Isacchi A., Borgia A.L., Marchionni C., Nesi M., Orrenius C., Panzeri A., Pesenti E., Rusconi L., Saccardo M.B., Vanotti E., Perrone E., Orsini P. Discovery of Entrectinib: A New 3-Aminoindazole As a Potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor. J Med Chem. 2016 Apr 14; 59(7): 3392–408. doi: 10.1021/acs.jmedchem.6b00064.

44. Drilon A. TRK inhibitors in TRK fusion-positive cancers. Ann Oncol. 2019 Nov 1; 30. doi: 10.1093/annonc/mdz282.

45. Hong D.S., DuBois S.G., Kummar S., Farago A.F., Albert C.M., Rohrberg K.S., van Tilburg C.M., Nagasubramanian R., Berlin J.D., Federman N., Mascarenhas L., Geoerger B., Dowlati A., Pappo A.S., Bielack S., Doz F., McDermott R., Patel J.D., Schilder R.J., Tahara M., Pfister S.M., Witt O., Ladanyi M., Rudzinski E.R., Nanda S., Childs B.H., Laetsch T.W., Hyman D.M., Drilon A. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020 Apr; 21(4): 531–40. doi: 10.1016/S1470-2045(19)30856-3.

46. Rosen E.Y., Schram A.M., Young R.J., Schreyer M.W., Hechtman J.F., Shu C.A., Ku N.C., Hyman D.M., Drilon A. Larotrectinib Demonstrates CNS Efficacy in TRK Fusion-Positive Solid Tumors. JCO Precis Oncol. 2019 May 16; 3. doi: 10.1200/PO.19.00009.

47. Doebele R.C., Drilon A., Paz-Ares L., Siena S., Shaw A.T., Farago A.F., Blakely C.M., Seto T., Cho B.C., Tosi D., Besse B., Chawla S.P., Bazhenova L., Krauss J.C., Chae Y.K., Barve M., Garrido-Laguna I., Liu S.V., Conkling P., John T., Fakih M., Sigal D., Loong H.H., Buchschacher G.L. Jr., Garrido P., Nieva J., Steuer C., Overbeck T.R., Bowles D.W., Fox E., Riehl T., Chow-Maneval E., Simmons B., Cui N., Johnson A., Eng S., Wilson T.R., Demetri G.D.; trial investigators. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020 Feb; 21(2): 271–82. doi: 10.1016/S1470-2045(19)30691-6.

48. Robinson G.W., Gajjar A.J., Gauvain K.M., Basu E.M., Macy M.E., Maese L.D., Sabnis A.J., Foster J.H., Shusterman S., Yoon J., Weiss B.D., Abdelbaki M., Farid-Kapadia M., Meneses-Lorente G., Cardenas A., Hutchinson K., Bergthold G., Maneval E.C., Fox E., Desai A.V. Phase 1/1B trial to assess the activity of entrectinib in children and adolescents with recurrent or refractory solid tumors including central nervous system (CNS) tumors. J Clin Oncol. 2019 May 20; 37(15): 10009. doi: 10.1200/JCO.2019.37.15_suppl.10009.

49. Yang M., Pan Z., Huang K., Büsche G., Feuerhake F., Chaturvedi A. , Nie D., Heuser M., Thol F., von Neuhoff N., Ganser A., Li Z. Activation of TRKA receptor elicits mastocytosis in mice and is involved in the development of resistance to KIT-targeted therapy. Oncotarget. 2017 May 19; 8(43): 73871–83. doi: 10.18632/oncotarget.18027.

50. Smith K.M., Fagan P.C., Pomari E., Germano G., Frasson C., Walsh C., Silverman I., Bonvini P., Li G. Antitumor activity of entrectinib, a pan-TRK, ROS1, and ALK inhibitor, in ETV6-NTRK3-positive acute myeloid leukemia. Mol Cancer Ther. 2018; 17(2): 455–63. doi: 10.1158/1535-7163.MCT-17-0419.

51. Roberts K.G., Janke L.J., Zhao Y., Seth A., Ma J., Finkelstein D., Smith S., Ebata K., Tuch B.B., Hunger S.P., Mullighan C.G. ETV6-NTRK3 induces aggressive acute lymphoblastic leukemia highly sensitive to selective TRK inhibition. Blood. 2018; 132(8): 861–5. doi: 10.1182/blood-2018-05-849554.

52. Taylor J., Pavlick D., Yoshimi A., Marcelus C., Chung S.S., Hechtman J.F., Benayed R., Cocco E., Durham B.H., Bitner L., Inoue D., Chung Y.R., Mullaney K., Watts J.M., Diamond E.L., Albacker L.A., Mughal T.I., Ebata K., Tuch B.B., Ku N., Scaltriti M., Roshal M., Arcila M., Ali S., Hyman D.M., Park J.H., Abdel-Wahab O. Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies. J Clin Invest. 2018; 128(9): 3819–25. doi: 10.1172/JCI120787.

53. Drilon A., Nagasubramanian R., Blake J.F., Ku N., Tuch B.B., Ebata K., Smith S., Lauriault V., Kolakowski G.R., Brandhuber B.J., Larsen P.D., Bouhana K.S., Winski S.L., Hamor R., Wu W.I., Parker A., Morales T.H., Sullivan F.X., DeWolf W.E., Wollenberg L.A., Gordon P.R., Douglas-Lindsay D.N., Scaltriti M., Benayed R., Raj S., Hanusch B., Schram A.M., Jonsson P., Berger M.F., Hechtman J.F., Taylor B.S., Andrews S., Rothenberg S.M., Hyman D.M. A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion-Positive Solid Tumors. Cancer Discov. 2017 Sep; 7(9): 963–72. doi: 10.1158/2159-8290.

54. Gainor J.F., Dardaei L., Yoda S., Friboulet L., Leshchiner I., Katayama R., Dagogo-Jack I., Gadgeel S., Schultz K., Singh M., Chin E., Parks M., Lee D., DiCecca R.H., Lockerman E., Huynh T., Logan J., Ritterhouse L.L., Le L.P., Muniappan A., Digumarthy S., Channick C., Keyes C., Getz G., Dias-Santagata D., Heist R.S., Lennerz J., Sequist L.V., Benes C.H., Iafrate A.J., Mino-Kenudson M., Engelman J.A., Shaw A.T. Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer. Cancer Discov. 2016 Oct; 6(10): 1118–33. doi: 10.1158/2159-8290.

55. Awad M.M., Katayama R., McTigue M., Liu W., Deng Y.L., Brooun A., Friboulet L., Huang D., Falk M.D., Timofeevski S., Wilner K.D., Lockerman E.L., Khan T.M., Mahmood S., Gainor J.F., Digumarthy S.R., Stone J.R., Mino-Kenudson M., Christensen J.G., Iafrate A.J., Engelman J.A., Shaw A.T. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med. 2013 Jun 20; 368(25): 2395–401. doi: 10.1056/NEJMoa1215530.

56. Cocco E., Schram A.M., Kulick A., Misale S., Won H.H., Yaeger R., Razavi P., Ptashkin R., Hechtman J.F., Toska E., Cownie J., Somwar R., Shifman S., Mattar M., Selçuklu S.D., Samoila A., Guzman S., Tuch B.B., Ebata K., de Stanchina E., Nagy R.J., Lanman R.B., Houck-Loomis B., Patel J.A., Berger M.F., Ladanyi M., Hyman D.M., Drilon A., Scaltriti M. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat Med. 2019 Sep; 25(9): 1422–7. doi: 10.1038/s41591-019-0542-z.

57. Drilon A., Zhai D., Deng W., Zhang X., Lee D., Rogers E., Whitten J., Huang Z., Graber A., Liu J., Stopatschinskaja S., Cui J.J., Kim D.-W., Cho B.C., Doebele R.C., Ou S.-H.I., Lee J., Shaw A.T. Abstract 442: Repotrectinib, a next generation TRK inhibitor, overcomes TRK resistance mutations including solvent front, gatekeeper and compound mutations. Cancer Res. 2019; 442. doi: 10.1158/1538-7445.AM2019-442.

58. Hyman D., Kummar S., Farago A., Geoerger B., Mau-Sorensen M., Taylor M., Garralda E., Nagasubramanian R., Natheson M., Song L., Capra M., Jorgensen M., Ho A., Shukla N., Smith S., Huang X., Tuch B., Ku N., Laetsch T.W., Drilon A., Hong D. Abstract CT127: Phase I and expanded access experience of LOXO-195 (BAY 2731954), a selective next-generation TRK inhibitor (TRKi). Cancer Res. 2019 Jul; doi: 10.1158/1538-7445.

59. Drilon A., Ou S.I., Cho B.C., Kim D.W., Lee J., Lin J.J., Zhu V.W., Ahn M.J., Camidge D.R., Nguyen J., Zhai D., Deng W., Huang Z., Rogers E., Liu J., Whitten J., Lim J.K., Stopatschinskaja S., Hyman D.M., Doebele R.C., Cui J.J., Shaw A.T. Repotrectinib (TPX-0005) Is a Next-Generation ROS1/TRK/ALK Inhibitor That Potently Inhibits ROS1/TRK/ALK Solvent-Front Mutations. Cancer Discov. 2018; 8(10): 1227–36. doi: 10.1158/2159-8290.CD-18-0484.

60. Lindeman N.I., Cagle P.T., Aisner D.L., Arcila M.E., Beasley M.B., Bernicker E.H., Colasacco C., Dacic S., Hirsch F.R., Kerr K., Kwiatkowski D.J., Ladanyi M., Nowak J.A., Sholl L., Temple-Smolkin R., Solomon B., Souter L.H., Thunnissen E., Tsao M.S., Ventura C.B., Wynes M.W., Yatabe Y. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018 Mar; 142(3): 321–46. doi: 10.5858/arpa.2017-0388-CP.

61. Rudzinski E.R., Lockwood C.M., Stohr B.A., Vargas S.O., Sheridan R., Black J.O., Rajaram V., Laetsch T.W., Davis J.L. Pan-Trk Immunohistochemistry Identifies NTRK Rearrangements in Pediatric Mesenchymal Tumors. Am J Surg Pathol. 2018 Jul; 42(7): 927–35. doi: 10.1097/PAS.0000000000001062.

62. Feng J., Ebata K., Hansen F., Kivi L., Kriegshauser C., Morosini D., Shen T.-S., Sireci A.N., Thorne-Nuzzo P., Tuch B. TRK wild-type and fusion protein expression in solid tumors: Characterization by immunohistochemistry and in situ hybridization. Ann Oncol. 2018 Sep; 29(Suppl 6). 80P.

63. Cheng L., Zhang S., Wang L., MacLennan G.T., Davidson D.D. Fluorescence in situ hybridization in surgical pathology: principles and applications. J Pathol Clin Res. 2017 Feb 23; 3(2):73–99. doi: 10.1002/cjp2.64.

64. Bourgeois J.M., Knezevich S.R., Mathers J.A., Sorensen P.H. Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol. 2000 Jul; 24(7): 937–46. doi: 10.1097/00000478-200007000-00005.

65. Tognon C., Knezevich S.R., Huntsman D., Roskelley C.D., Melnyk N., Mathers J.A., Becker L., Carneiro F., MacPherson N., Horsman D., Poremba C., Sorensen P.H. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002 Nov; 2(5): 367–76. doi: 10.1016/s1535-6108(02)00180-0.

66. Brzeziańska E., Karbownik M., Migdalska-Sek M., PastuszakLewandoska D., Włoch J., Lewiński A. Molecular analysis of the RET and NTRK1 gene rearrangements in papillary thyroid carcinoma in the Polish population. Mutat Res. 2006 Jul 25; 599(1–2):26–35. doi: 10.1016/j.mrfmmm.2005.12.013.

67. Sheikine Y., Kuo F.C., Lindeman N.I. Clinical and Technical Aspects of Genomic Diagnostics for Precision Oncology. J Clin Oncol. 2017 Mar 20; 35(9): 929–33. doi: 10.1200/JCO.2016.70.7539.

68. Zheng Z., Liebers M., Zhelyazkova B., Cao Y., Panditi D., Lynch K.D., Chen J., Robinson H.E., Shim H.S., Chmielecki J., Pao W., Engelman J.A., Iafrate A.J., Le L.P. Anchored multiplex PCR for targeted next-generation sequencing. Nat Med. 2014 Dec; 20(12): 1479–84. doi: 10.1038/nm.3729.


Рецензия

Для цитирования:


Кечин А.А., Андриянова А.И., Филипенко М.Л. Cтруктурные перестройки генов NTRK: характеристика, методы детекции и таргетная терапия онкологических заболеваний. Сибирский онкологический журнал. 2021;20(6):120-133. https://doi.org/10.21294/1814-4861-2021-20-6-120-133

For citation:


Kechin A.A., Andriyanova A.I., Filipenko M.L. Sructural rearrangements of NTRK genes: characteristics, methods of detection and targeted therapy for cancer. Siberian journal of oncology. 2021;20(6):120-133. (In Russ.) https://doi.org/10.21294/1814-4861-2021-20-6-120-133

Просмотров: 56


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)