Preview

Siberian journal of oncology

Advanced search

On the role of autophagy in the progression of differentiated thyroid cancer (literature review)

https://doi.org/10.21294/1814-4861-2021-20-6-134-140

Abstract

The aim of the study was to analyze and summarize available literature data on the role of autophagy in thyroid cancer. Material and methods. We analyzed 34 publications available from pubmed and elibrary. Ru databases concerning thyroid cancer and autophagy. Results. The review discussed the role of autophagy in the progression of thyroid cancer. The development of autophagy-targeted therapy was shown can improve treatment for thyroid cancer. Differentiated thyroid cancer (dtc) is the most common endocrine malignancy. Treatment of dtc patients who are resistant to radioactive iodine therapy is a major challenge. Molecular targeted therapy using tyrosine kinase inhibitors significantly improves treatment outcomes. Conclusion. To enhance the therapeutic effect of treatment with multi-target tyrosine kinase inhibitors, as well as to overcome drug resistance, it is necessary to study the role of autophagy in the development and progression of thyroid cancer.

About the Authors

K. A. Garipov
Kazan State Medical Academy – branch of the Russian Medical Academy of Continuing Professional Education; Republican Clinical Cancer Center of Ministry of Health of the Republic of Tatarstan
Russian Federation

MD, Postgraduate, Department of Oncology, Radiology and Palliative Medicine; Oncologist, Department No. 4

SPIN-код: 9013-7722 

36, Butlerova st., 420012, Kazan, Russia 

 29, Sibirsky trakt, 420029, Kazan, Russia 



Z. A. Afanaseva
Kazan State Medical Academy – branch of the Russian Medical Academy of Continuing Professional Education; Republican Clinical Cancer Center of Ministry of Health of the Republic of Tatarstan
Russian Federation

MD, DSc, Professor, Department of Oncology, Radiology and Palliative Medicine; Head of the Center for Diagnosis and Treatment of Patients with Thyroid Cancer and Other Endocrine Organs

SPIN-код: 9921-0860. Researcher ID (WOS): AAE-2027-2020. Author ID (Scopus):  57196436798 

 36, Butlerova st., 420012, Kazan, Russia 

 29, Sibirsky trakt, 420029, Kazan, Russia 



Z. I. Abramova
Federal  University Kazan (Volga Region) Federal University, Institute of Fundamental Medicine and Biology
Russian Federation

 DSc, Professor, Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology; Chief Researcher, Laboratory of Molecular Foundations of Pathogenesis and Therapy of Tumor Diseases,  Institute of Physics and Mathematics and Biology, Kazan Federal University 

SPIN-код: 5293-9741. Researcher ID: N-6976-2013. Author ID (Scopus): 24833015100 

 18, Kremlin st., 420008, Kazan, Russia 



References

1. Borodavina E.V., Isaev P.A., Shurinov A.Yu., Rumyantsev P.O., Krylov V.V., Petrosyan K.M., Kaprin A.D., Ivanov S.A., Podvyaznikov S.O., Romanov I.S., Mudunov A.M., Slashchuk K.Yu., Zhikhorev R.S., Volkonsky M.V., Chagova R.M., Suslova I.R., Khryapa A.I., Lepshokova A.Kh., Fadeeva N.L., Safarova A.R., Kaleikina L.P., Lymar E.V., Chernyakova E.M., Snezhko O.A., Zinkovskaya A.E. ,Mufazalov F.F.,Kuzmina E.S., Druzhinina Yu.V., Musin Sh.I., Mukhitova M.R., Khasanova A.I., Safina S.Z., Kirienko S.L. Efficacy and tolerability of lenvatinib in radioiodine-resistant differentiated thyroid cancer based on the results of a multicenter observational study in the Russian Federation. Head and neck Tumors. 2020; 10(1): 65–72. (in Russian)].

2. Amaravadi R., Kimmelman A.C., White E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016; 30(17): 1913–30. doi: 10.1101/gad.287524.116.

3. Yun C.W., Lee S.H. The roles of autophagy in cance. Int J Mol Sci. 2018; 19(11): 3466. doi: 10,3390 / ijms19113466

4. Gewirtz D.A. The four faces of autophagy: Implications for cancer therapy. Cancer Res. 2014; 74: 647–651. doi: 10.1158/0008-5472.CAN-13-2966.

5. Rabinowitz J.D., White E. Autophagy and metabolism. Science. 2010; 330 (6009): 1344–1348. doi: 10.1126 / science.1193497.

6. Galluzzi L., Pietrocola F., Bravo-San Pedro J.M., Amaravadi R.K., Baehrecke E.H., Cecconi F., Codogno P., Debnath J., Gewirtz D.A, Karantza V., Kimmelman A., Kumar S., Levine B., Maiuri M.C., Martin S.J., Penninger J., Piacentini M., Rubinsztein D.C., Simon H.-U., Simonsen A., Thorburn A.M., Velasco G., Ryan K.M., Kroemer G. Autophagy in malignant transformation and cancer progression. EMBO J. 2015; 34(7): 856–880. doi: 10.15252/embj.201490784.

7. Burada F., Nicoli E.R., Ciurea M.E., Uscatu D.C., Ioana M., Gheonea D.I. Autophagy in colorectal cancer: An important switch from physiology to pathology. World J Gastrointest Oncol. 2015; 7(11): 271–284. doi: 10.4251/wjgo.v7.i11.271.

8. Su Z., Yang Z., Xu Y., Chen Y., Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 2015; 14: 48. doi: 10.1186/s12943-015-0321-5.

9. Kocaturk N.M., Akkoc Y., Kig C., Bayraktar O., Gozuacik D., Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 2019; 15(134): 116–137. doi: 10.1016/j.ejps.2019.04.011.

10. Tesselaar M.H., Crezee T., Schuurmans I., Gerrits D., Nagarajah J., Boerman O.C., Grunsven I.-van E.-van, Smit J.W.A, Netea-Maier R.T., Plantinga T.S. Digitalislike compounds restore hNIS expression and iodide uptake capacity in anaplastic thyroid cancer. J Nucl Med. 2018; 59(5): 780–786. doi: 10.2967/jnumed.117.200675.

11. Yu Y., Yu X., Fan C., Wang H., Wang R., Feng C., Guan H. Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer. J Mol Med. 2018; 96(8): 777–790. doi: 10.1007 / s00109-018-1659-0.

12. Wei W., Hardin H., Luo Q.Y. Targeting autophagy in thyroid cancers. Endocr Relat Cancer. 2019; 26(4): 181–194. doi: 10.1530/ERC-18-0502.

13. KimM.J.,WooS.J.,YoonC.H.,LeeJ.S.,AnS.,ChoiY.H.,HwangS.G., Yoon G., Lee S.J. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. Involvement of autophagy in oncogenic KRas-induced malignant cell transformation. J Biol Chem. 2011; 286(15): 12924–32. doi: 10.1074/jbc.M110.138958

14. Fagin J.A., Wells S.A. Biologic and clinical perspectives on thyroid cancer. New Engl J Med. 2016; 375(23): 1054–1067. doi: 10.1056/NEJMc1613118.

15. Morani F., Titone R., Pagano L., Galetto A., Alabiso O., Aimaretti G., Isidoro C. Autophagy and thyroid carcinogenesis: genetic and epigenetic links. Endocr Relat Cancer. 2013; 21(1): 13–29. doi: 10.1530/ERC-13-0271.

16. Vlahakis A., Graef M., Nunnari J., Powers T. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci USA. 2014; 111(29): 10586–10591.doi: 10.1073/pnas.1406305111.

17. Spirina L.V., Chizhevskaya S.Yu., Kondakova I.V., Tarasenko N.V. The role of autophagy in the development of thyroid tumors, connection with the activation of the AKT / m-TOR signaling pathway. Clinical and Experimental Thyroidology. 2019; 15(3): 110–117. (in Russian).

18. Wang H.W., Kang., Zhao Y., Min I., Wyrwas B., Moore M., Teng L., Zarnegar R., Jiang X., Fahey T.J. Targeting autophagy sensitizes BRAFmutant thyroid cancer to vemurafenib. J Clin Endocrinol Metab. 2017; 102(2): 634–643. doi: 10.1210/jc.2016-1999.

19. Jiang Z.F., Shao L.J., Wang W.M., Yan X.B., Liu R.Y. Decreased expression of Beclin-1 and LC3 in human lung cancer. Mol Biol Rep. 2012; 39(1): 259–267. doi: 10.1007/s11033-011-0734-1.

20. Yu J., Ren P., Zhong T., Wang Y., Yan M., Xue B., Li R., Dai C., Liu C., Chen G., Yu X.F. Pseudolaric acid B inhibits proliferation in SW579 human thyroid squamous cell carcinoma. Mol Med Rep. 2015; 12(5): 7195–7202. doi: 10,3892/mmr.2015.4418.

21. Kim H.M., Kim E.S., Koo J.S. Expression of autophagy-related proteins in different types of thyroid cancer. Int J Mol Sci. 2017; 18(3): 540. doi: 10,3390/ijms18030540.

22. White E. Autophagy and p53. Cold Spring Harb Perspect Med. 2016; 6(4): a026120. doi: 10.1101/cshperspect.a026120.

23. Gao P., Hao F., Dong X., QiuY. The role of autophagy and Beclin-1 in radiotherapy-induced apoptosis in thyroid carcinoma cells. Int J Clin Exp Pathol. 2019; 12(3): 885–892.

24. Gundara J.S., Robinson B.G., Sidhu S.B. Evolution of the «autophagamiR». Autophagy. 2011; 7(12): 1553–1554. doi: 10.4161/auto.7.12.17762.

25. Molinaro E., Romei C., Biagini A., Sabini E., Agate L., Mazzeo S., Materazzi G., Sellari-Franceschini S., Ribechini A., Torregrossa L., Basolo F., Vitti P., Elisei R. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017; 13(11): 644–660. doi: 10.1038/nrendo.2017.76.

26. Catalano M.G., Fortunati N., Pugliese M., Marano F., Ortoleva L., Poli R., Asioli S., Bandino A., Palestini N., Grange C., Bussolati B., Boccuzzi G. Histone deacetylase inhibition modulates E-cadherin expression and suppresses migration and invasion of anaplastic thyroid cancer cells. J Clin Endocrinol Metab. 2012; 97(7): 1150–1159. doi: 10.1210/jc.2011-2970.

27. Füllgrabe J., Klionsky D.J., Histone B.J. Post-translational modifications regulate autophagy flux and outcome. Autophagy. 2013; 9(10): 1621–1623. doi: 10.4161/auto.25803.

28. Liu K., Ren T., Huang Y., Sun K., Bao X., Wang S., Zheng B., Guo W. Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death Dis. 2017; 8(8): 3015. doi: 10.1038/cddis.2017.422.

29. Lin C.I., Whang E.E., Abramson M.A., Jiang X., Price B.D., Donner D.B., Moore Jr. F.D., Ruan D.T. Autophagy: a new target for advanced papillary thyroid cancer therapy. Surgery. 2009; 146(6): 1208–1214. doi: 10.1016/j.surg.2009.09.019.

30. Naoum G.E., Morkos M., Kim B., Arafat W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer. 2018; 17(1): 51. doi: 10.1186 / s12943-018-0786-0.

31. Plantinga T.S., Tesselaar M.H., Morreau H., Corssmit E.P.M., Willemsen B.K., Kusters B., Grunsven A.C.E.-van, Smit J.W.A, NeteaMaierR.T. Autophagy activity is associated with membranous sodium iodide symporter expression and clinical response to radioiodine therapy in non-medullary thyroid cancer. Autophagy. 2016; 12(7): 1195–1205. doi: 10.1080/15548627.2016.1174802.

32. Ryabay O.O., Egorova A.V., StepanovaE.V. The role of autophagy in the mechanism of tumor cell death. Advances in Modern Biology. 2015; 135(2): 177–188. (in Russian).

33. Wang W., Kang H., Zhao Y., Min I., Wyrwas B., Moore M., Teng L., Zarnegar R., Jiang X., Fahey T.J. Targeting autophagy sensitizes BRAFmutant thyroid cancer to vemurafenib. J Clin Endocrinol Metab. 2017; 102(2): 634–643. doi: 10.1210/jc.2016-1999.

34. Meng X., Wang H., Zhao J.,Hu L., Zhi J., Wei S., RuanX., Hou X., Li D., Zhang J., Yang W., Qian B., Wu Y., Zhang Y., Meng Z., Guan L., Zhang H., Zheng X., Gao M. Apatinib inhibits cell proliferation and induces autophagy in human papillary thyroid carcinoma via the PI3K/Akt/mTOR signaling pathway. Front Oncol. 2020; 10(3): 217. doi: 10.3389/fonc.2020.00217.


Review

For citations:


Garipov K.A., Afanaseva Z.A., Abramova Z.I. On the role of autophagy in the progression of differentiated thyroid cancer (literature review). Siberian journal of oncology. 2021;20(6):134-140. (In Russ.) https://doi.org/10.21294/1814-4861-2021-20-6-134-140

Views: 654


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)