Preview

Siberian journal of oncology

Advanced search

Comparative analysis of tumor control gene and microRNA expression profiles in tumor and adjacent tissues in patients with colorectal cancer

https://doi.org/10.21294/1814-4861-2022-21-2-55-64

Abstract

Background. Various tumor control genes and microRNAs (miRNa) play an important role in the development and progression of colorectal cancer (CRC). the expression of these genes can differ significantly in tumor and adjacent healthy tissues. there is no exact data at what distance from the tumor the adjacent healthy tissue is located in terms of gene expression.

The aim of the investigation was to study the tumor control genes (E2F3, TGFB, NFKB, KLF-12, EGFR and MMP9), as well as the microRNA genes (microRNA-15, -16, -21 and -210) expression profiles in tumor and adjacent healthy tissues.

Material and methods. the study included 19 patients diagnosed with colorectal cancer. the tumor control genes (E2F3, TGFB, NFKB, KLF-12, EGFR and MMP9), as well as the miRNA genes (miRNA-15, -16, -21 and -210) expression levels were investigated in tumor and adjacent normal tissue samples taken during colonoscopy.

Results. a decrease in the level of expression of E2F3 (median 3,73, Q1-Q3 2,64 Reu vs. median 6.5, Q1-Q3 6,39 REU, p=0,01) and miRNA-16 (median 2,83, Q1-Q3 4,74 REU vs. median 4,29, Q1-Q3 3,73 REU, p=0,027) and an increase in the expression level of miRNA-21 (median 2,64, Q1-Q3 1,38 REU vs. median 1,41, Q1-Q3 1,21 REU, p<0,001) were found in tumor tissue compared to normal tissue of patients with CRC.

Conclusion. significant differences in the E2F3, miRNA-16 and miRNA-21 gene expressions were revealed. an increased level of E2F3 and miRNA-16 expressions at a distance of 1–2 cm from the tumor may be a predictor of tumor recurrence and progression, and an increased miRNA-21 expression in tumor tissue as compared to adjacent tissue may be a negative prognostic factor. this information can be used in further clinical research.

About the Authors

M. I. Sluzhev
N.N. Petrov National Medical Research Center of Oncology; I.P. Pavlov First Saint Petersburg State Medical University 
Russian Federation

MD, Oncologist; Postgraduate of Oncology Department

68, Leningradskaya St., 197758, St. Petersburg, Russia

6–8, Lva Tolstogo St., 1970222, St. Petersburg, Russia



M. I. Zaraisky
I.P. Pavlov First Saint Petersburg State Medical University; I.I. Mechnikov North-Western State Medical University
Russian Federation

 MD, Professor, Department of Clinical Laboratory Diagnostics with the Course of Molecular Medicine; Professor, Department of Medical Genetics

Author ID (Scopus): 57199513914 

6–8, Lva Tolstogo St., 1970222, St. Petersburg, Russia

41, Kirochnaya St., 191015, St. Petersburg, Russia

 



V. V. Semiglazov
N.N. Petrov National Medical Research Center of Oncology; I.P. Pavlov First Saint Petersburg State Medical University
Russian Federation

 MD, DSc, Leading Researcher, Scientific Department of General Oncology and Urology; Head of Oncology Department

Researcher ID (WOS): AAH-9574-2020. Author ID (Scopus): 7006310596 

68, Leningradskaya St., 197758, St. Petersburg, Russia

6–8, Lva Tolstogo St., 1970222, St. Petersburg, Russia



T. Yu. Semiglazova
N.N. Petrov National Medical Research Center of Oncology; I.I. Mechnikov North-Western State Medical University
Russian Federation

 MD, DSc, Head of Department of Innovative Methods of Therapeutic Oncology and Rehabilitation; Professor, Oncology Department

Author ID (Scopus): 8562948700 

68, Leningradskaya St., 197758, St. Petersburg, Russia

41, Kirochnaya St., 191015, St. Petersburg, Russia



E. V. Tkachenko
N.N. Petrov National Medical Research Center of Oncology
Russian Federation

 MD, PhD, Head of the Department of Chemotherapy

68, Leningradskaya St., 197758, St. Petersburg, Russia



S. V. Kondratev
N.N. Petrov National Medical Research Center of Oncology
Russian Federation

 MD, Oncologist 

68, Leningradskaya St., 197758, St. Petersburg, Russia



N. A. Brish
N.N. Petrov National Medical Research Center of Oncology
Russian Federation

 MD, Oncologist 

68, Leningradskaya St., 197758, St. Petersburg, Russia



Yu. V. Alekseeva
N.N. Petrov National Medical Research Center of Oncology
Russian Federation

 MD, Oncologist 

68, Leningradskaya St., 197758, St. Petersburg, Russia



Iu. V. Petrik
N.N. Petrov National Medical Research Center of Oncology
Russian Federation

 MD, Endoscopist 

68, Leningradskaya St., 197758, St. Petersburg, Russia



A. N. Sidorova
N.N. Petrov National Medical Research Center of Oncology
Russian Federation

 MD, Endoscopist 

68, Leningradskaya St., 197758, St. Petersburg, Russia



References

1. Kaprin A.D. Clinical guidelines. Malignant neoplasms of the colon and rectosigmoid region. All-Russian National Union. Association of Oncologists of Russia; 2020. (in Russian).

2. Kaprin A.D. Clinical guidelines. Rectal cancer. All-Russian National Union Association of Oncologists of Russia; 2020. (in Russian).

3. Bujko K., Rutkowski A., Chang G.J., Michalski W., Chmielik E., Kusnierz J. Is the 1-cm rule of distal bowel resection margin in rectal cancer based on clinical evidence? A systematic review. Ann Surg Oncol. 2012; 19(3): 801–8. doi: 10.1245/s10434-011-2035-2.

4. Ker C.-G. Surgical safety margin of gastroenterological cancer surgery: A truth or a dream? Formosan J Sur. 2014; 47(3): 83–9.

5. Aran D., Camarda R., Odegaard J., Paik H., Oskotsky B., Krings G., Goga A., Sirota M., Butte A.J. Comprehensive analysis of normal adjacent to tumor transcriptomes. Nat Commun. 2017; 8(1): 1077. doi: 10.1038/s41467-017-01027-z.

6. Cai J., Xia L., Li J., Ni S., Song H., Wu X. Tumor-Associated Macrophages Derived TGF-β‒Induced Epithelial to Mesenchymal Transition in Colorectal Cancer Cells through Smad2,3-4/Snail Signaling Pathway. Cancer Res Treat. 2019; 51(1): 252–66. doi: 10.4143/crt.2017.613.

7. Nakano M., Kikushige Y., Miyawaki K., Kunisaki Y., Mizuno S., Takenaka K., Tamura S., Okumura Y., Ito M., Ariyama H., Kusaba H., Nakamura M., Maeda T., Baba E., Akashi K. Dedifferentiation process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer. Oncogene. 2019; 38(6): 780–93. doi: 10.1038/s41388-018-0480-0.

8. Saavedra H.I., Maiti B., Timmers C., Altura R., Tokuyama Y., Fukasawa K., Leone G. Inactivation of E2F3 results in centrosome amplification. Cancer Cell. 2003; 3(4): 333–46. doi: 10.1016/s1535-6108(03)00083-7.

9. Yao H., Lu F., Shao Y. The E2F family as potential biomarkers and therapeutic targets in colon cancer. PeerJ. 2020; 8. doi: 10.7717/peerj.8562.

10. Jana A., Krett N.L., Guzman G., Khalid A., Ozden O., Staudacher J.J., Bauer J., Baik S.H., Carroll T., Yazici C., Jung B. NFkB is essential for activin-induced colorectal cancer migration via upregulation of PI3KMDM2 pathway. Oncotarget. 2017; 8(23): 37377–93.

11. Del Carmen S., Corchete L.A., Gervas R., Rodriguez A., Garcia M., Álcazar J.A., García J., Bengoechea O., Muñoz-Bellvis L., Sayagués J.M., Abad M. Prognostic implications of EGFR protein expression in sporadic colorectal tumors: Correlation with copy number status, mRNA levels and miRNA regulation. Sci Rep. 2020; 10(1): 4662. doi: 10.1038/s41598-020-61688-7.

12. Yan Q., Zhang W., Wu Y., Wu M., Zhang M., Shi X., Zhao J., Nan Q., Chen Y., Wang L., Cheng T., Li J., Bai Y., Liu S., Wang J. KLF8 promotes tumorigenesis, invasion and metastasis of colorectal cancer cells by transcriptional activation of FHL2. Oncotarget. 2015; 6(28): 25402–17.

13. Wang X., Jiang Z., Zhang Y., Wang X., Liu L., Fan Z. RNA sequencing analysis reveals protective role of kruppel-like factor 3 in colorectal cancer. Oncotarget. 2017; 8(13): 21984–93. doi: 10.18632/oncotarget.15766.

14. Yang X.Z., Cui S.Z., Zeng L.S., Cheng T.T., Li X.X., Chi J., Wang R., Zheng X.F., Wang H.Y. Overexpression of Rab1B and MMP9 predicts poor survival and good response to chemotherapy in patients with colorectal cancer. Aging (Albany NY). 2017; 9(3): 914–31. doi: 10.18632/aging.101200.

15. Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120(1): 15–20. doi: 10.1016/j.cell.2004.12.035.

16. Truong A.D., Rengaraj D., Hong Y., Hoang C.T., Hong Y.H., Lillehoj H.S. Differentially expressed JAK-STAT signaling pathway genes and target microRNAs in the spleen of necrotic enteritis-afflicted chicken lines. Res Vet Sci. 2017; 115: 235–43. doi: 10.1016/j.rvsc.2017.05.018.

17. Fesler A., Liu H., Ju J. Modified miR-15a has therapeutic potential for improving treatment of advanced stage colorectal cancer through inhibition of BCL2, BMI1, YAP1 and DCLK1. Oncotarget. 2017; 9(2): 2367–83. doi: 10.18632/oncotarget.23414.

18. Liu L., Wang D., Qiu Y., Dong H., Zhan X. Overexpression of microRNA-15 increases the chemosensitivity of colon cancer cells to 5-fluorouracil and oxaliplatin by inhibiting the nuclear factor-κB signalling pathway and inducing apoptosis. Exp Ther Med. 2017; 2655–60. doi: 10.3892/etm.2017.5675.

19. Farace C., Pisano A., Griñan-Lison C., Solinas G., Jiménez G., Serra M., Carrillo E., Scognamillo F., Attene F., Montella A., Marchal J.A., Madeddu R. Deregulation of cancer-stem-cell-associated miRNAs in tissues and sera of colorectal cancer patients. Oncotarget. 2020; 11(2): 116–30. doi: 10.18632/oncotarget.27411.

20. Zhang W., Zhou F., Jiang D., Mao Y., Ye D. Association of the Expression Level of miR-16 with Prognosis of Solid Cancer Patients: A MetaAnalysis and Bioinformatic Analysis. Disease Markers. 2020; 1–9.

21. Sabry D., El-Deek S.E.M., Maher M., El-Baz M.A.H., ElBader H.M., Amer E., Hassan E.A., Fathy W., El-Deek H.E.M. Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: impact of HIF-1α-VEGF signaling pathway. Mol Cell Biochem. 2019; 454(1–2): 177–89. doi: 10.1007/s11010-018-3462-1.

22. Yu Y., Chen Z., Liu H., Jin W., Ding Z., Zheng S. Tissue microRNA-21 expression predicted recurrence and poor survival in patients with colorectal cancer – a meta-analysis. OTT. 2016; 2615.

23. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013; 310(20): 2191–4. doi: 10.1001/jama.2013.281053.

24. Sazanov A.A., Kiselyova E.V., Zakharenko A.A., Romanov M.N., Zaraysky M.I. Plasma and saliva miR-21 expression in colorectal cancer patients. J Appl Genet. 2017; 58(2): 231–7. doi: 10.1007/s13353-016-0379-9.

25. Seliverstov R.Yu., Zaraiskiy M.I., Tyurin R.V., Naryshkin A.G., Valerko V.G., Semiglazov V.V., Takahachi Ch. Microrna in monitoring of the evolution of glial cerebral tumors. Sib J Onkol. 2020; 19(3): 47–53. doi: 10.21294/1814-4861-2020-19-3-47-53.

26. Yuan Z., Liang X., Zhan Y., Wang Z., Xu J., Qiu Y., Wang J., Cao Y., Le V.M., Ly H.T., Xu J., Li W., Yin P., Xu K. Targeting CD133 reverses drugresistance via the AKT/NF-κB/MDR1 pathway in colorectal cancer. Br J Cancer. 2020; 122(9): 1342–53. doi: 10.1038/s41416-020-0783-0.

27. Ma Q., Wang X., Li Z., Li B., Ma F., Peng L., Zhang Y., Xu A., Jiang B. microRNA-16 represses colorectal cancer cell growth in vitro by regulating the p53/survivin signaling pathway. Oncol Rep. 2013; 29(4): 1652–8. doi: 10.3892/or.2013.2262.

28. Wu Y., Song Y., Xiong Y., Wang X., Xu K., Han B., Bai Y., Li L., Zhang Y., Zhou L. MicroRNA-21 (Mir-21) Promotes Cell Growth and Invasion by Repressing Tumor Suppressor PTEN in Colorectal Cancer. Cell Physiol Biochem. 2017; 43(3): 945–58. doi: 10.1159/000481648.

29. Tagscherer K.E., Fassl A., Sinkovic T., Richter J., Schecher S., Macher-Goeppinger S., Roth W. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int. 2016; 16: 42. doi: 10.1186/s12935-016-0321-6.

30. Nijhuis A., Thompson H., Adam J., Parker A., Gammon L., Lewis A., Bundy J.G., Soga T., Jalaly A., Propper D., Jeffery R., Suraweera N., McDonald S., Thaha M.A., Feakins R., Lowe R., Bishop C.L., Silver A. Remodelling of microRNAs in colorectal cancer by hypoxia alters metabolism profiles and 5-fluorouracil resistance. Hum Mol Genet. 2017; 26(8): 1552–64. doi: 10.1093/hmg/ddx059.


Review

For citations:


Sluzhev M.I., Zaraisky M.I., Semiglazov V.V., Semiglazova T.Yu., Tkachenko E.V., Kondratev S.V., Brish N.A., Alekseeva Yu.V., Petrik I.V., Sidorova A.N. Comparative analysis of tumor control gene and microRNA expression profiles in tumor and adjacent tissues in patients with colorectal cancer. Siberian journal of oncology. 2022;21(2):55-64. (In Russ.) https://doi.org/10.21294/1814-4861-2022-21-2-55-64

Views: 580


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)