Preview

Сибирский онкологический журнал

Расширенный поиск

Иммунотерапия в комплексном лечении опухолевых заболеваний

https://doi.org/10.21294/1814-4861-2022-21-2-118-129

Полный текст:

Аннотация

Цель исследования – проанализировать базу научной литературы с целью выявления и анализа возможностей противоопухолевой иммунотерапии, направленной на усиление способности иммунной системы противостоять развитию опухоли и(или) ослабление способности опухоли поддерживать свой рост.

Материал и методы. Проведен поиск доступных литературных источников, опубликованных в базе данных Medline, Pubmed и др. Было найдено 215 источников, посвященных изучению формирования противоопухолевых механизмов и возможности их модуляции, из которых 57 были включены в данный обзор.

Результаты. Обзор посвящен анализу литературы по супрессии опухолевого роста путем модуляции воспаления, коррекции концентрации факторов и ферментов, ингибирования формирования иммуносупрессорных клеток, усиления антительной цитотоксичности, стимуляции клеточной цитотоксичности. Оценены возможности противоопухолевой вакцинации.

Заключение. Установлено, что разные иммунотерапевтические агенты могут усиливать противоопухолевое действие друг друга. На ранних стадиях болезни иммунотерапия может элиминировать опухолевые клетки, оставшиеся в организме после хирургического удаления первичной опухоли. На поздних стадиях заболевания комбинированное лечение, включающее в себя традиционное циторедуктивное и иммунотерапевтическое лечение, должно быть направлено на остановку или торможение развития болезни. Прогноз течения заболевания можно оценивать по воспалительной шкале, основанной на определении 3 параметров крови: содержания С-реактивного белка, лактат-дегидрогеназы и нейтрофил-лимфоцитарного соотношения.

Об авторах

В. И. Селедцов
ФГБНУЗ «Центральная клиническая больница РАН»
Россия

 доктор медицинских наук, главный научный сотрудник

SPIN-код: 6469-9230

 Россия, 117593, г. Москва, Литовский бульвар, 1А 



Г. В. Селедцова
ФГБНУ «Научно-исследовательский институт фундаментальной и клинической иммунологии»
Россия

 доктор медицинских наук, главный научный сотрудник

SPIN-код: 1086-8579. Researcher ID (WOS): B-1085-2014

 Россия, 630099, г. Новосибирск, ул. Ядринцевская, 14 



А. Б. Доржиева
ФГБНУ «Научно-исследовательский институт фундаментальной и клинической иммунологии»
Россия

 аспирант

 Россия, 630099, г. Новосибирск, ул. Ядринцевская, 14 



И. П. Иванова
ФГБНУ «Научно-исследовательский институт фундаментальной и клинической иммунологии»
Россия

 кандидат медицинских наук, старший научный сотрудник

SPIN-код: 9322-2073. Researcher ID (WOS):D-9386-2014

 Россия, 630099, г. Новосибирск, ул. Ядринцевская, 14 



Список литературы

1. Seledtsov V.I., von Delwig A. Clinically feasible and prospective immunotherapeutic interventions in multidirectional comprehensive treatment of cancer. Expert Opin Biol Ther. 2021; 21(3): 323–42. doi: 10.1080/14712598.2021.1828338.

2. Santos P.M., Butterfield L.H. Dendritic Cell-Based Cancer Vaccines. J Immunol. 2018; 200(2): 443–9. doi: 10.4049/jimmunol.1701024.

3. Tanel A., Fonseca S.G., Yassine-Diab B., Bordi R., Zeidan J., Shi Y., Benne C., Sékaly R.P. Cellular and molecular mechanisms of memory T-cell survival. Expert Rev Vaccines. 2009; 8(3): 299–312. doi: 10.1586/14760584.8.3.299.

4. Seledtsov V.I., von Delwig A.A. Immune memory limits human longevity: the role of memory СD4+ T cells in age-related immune abnormalities. Expert Rev Vaccines. 2020; 19(3): 209–15. doi: 10.1080/14760584.2020.1745638.

5. Ayers M., Lunceford J., Nebozhyn M., Murphy E., Loboda A., Kaufman D.R., Albright A., Cheng J.D., Kang S.P., Shankaran V., PihaPaul S.A., Yearley J., Seiwert T.Y., Ribas A., McClanahan T.K. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017; 127(8): 2930–40. doi: 10.1172/JCI91190.

6. Seledtsov V.I., Goncharov A.G., Seledtsova G.V. Clinically feasible approaches to potentiating cancer cell-based immunotherapies. Hum Vaccin Immunother. 2015; 11(4): 851–69. doi:10.1080/21645515.2015.1009814.

7. Andzinski L., Kasnitz N., Stahnke S., Wu C.F., Gereke M., von KöckritzBlickwede M., Schilling B., Brandau S., Weiss S., Jablonska J. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer. 2016; 138(8): 1982–93. doi: 10.1002/ijc.29945.

8. Seledtsov V.I., Seledtsova G.V.A balance between tissue-destructive and tissue-protective immunities: a role of toll-like receptors in regulation of adaptive immunity. Immunobiology. 2012; 217(4): 430–5. doi:10.1016/j.imbio.2011.10.011.

9. Darcy P.K., Neeson P., Yong C.S., Kershaw M.H. Manipulating immune cells for adoptive immunotherapy of cancer. Curr Opin Immunol. 2014; 27: 46–52. doi: 10.1016/j.coi.2014.01.008.

10. Seledtsov V.I., Seledtsova G.V. A Possible Role for Idiotype/Antiidiotype B-T Cell Interactions in Maintaining Immune Memory. Front Immunol. 2017; 8: 409. doi: 10.3389/fimmu.2017.00409.

11. Zhang Z., Liu S., Zhang B., Qiao L., Zhang Y., Zhang Y. T Cell Dysfunction and Exhaustion in Cancer. Front Cell Dev Biol. 2020; 8: 17. doi: 10.3389/fcell.2020.00017.

12. Qian J., Wang C., Wang B., Yang J., Wang Y., Luo F., Xu J., Zhao C., Liu R., Chu Y. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. J Neuroinflammation. 2018; 15(1): 290. doi: 10.1186/s12974-018-1330-2.

13. Tran L., Theodorescu D. Determinants of Resistance to Checkpoint Inhibitors. Int J Mol Sci. 2020; 21(5): 1594. doi: 10.3390/ijms21051594.

14. Liang C., Jiang E., Yao J., Wang M., Chen S., Zhou Z., Zhai W., Ma Q., Feng S., Han M. Interferon-γ mediates the immunosuppression of bone marrow mesenchymal stem cells on T-lymphocytes in vitro. Hematology. 2018; 23(1): 44–9. doi: 10.1080/10245332.2017.1333245.

15. Liu Y., Liang X., Yin X., Lv J., Tang K., Ma J., Ji T., Zhang H., Dong W., Jin X., Chen D., Li Y., Zhang S., Xie H.Q., Zhao B., Zhao T., Lu J., Hu Z.W., Cao X., Qin F.X., Huang B. Blockade of IDO-kynurenineAhR metabolic circuitry abrogates IFN-γ-induced immunologic dormancy of tumor-repopulating cells. Nat Commun. 2017; 8: 15207. doi: 10.1038/ncomms15207.

16. Onizuka S., Tawara I., Shimizu J., Sakaguchi S., Fujita T., Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res. 1999; 59(13): 3128–33.

17. Palena C., Schlom J. Vaccines against human carcinomas: strategies to improve antitumor immune responses. J Biomed Biotechnol. 2010. doi: 10.1155/2010/380697.

18. Kim J.H., Kim B.S., Lee S.K. Regulatory T Cells in Tumor Microenvironment and Approach for Anticancer Immunotherapy. Immune Netw. 2020; 20(1). doi: 10.4110/in.2020.20.e4.

19. Gianchecchi E., Fierabracci A. Inhibitory Receptors and Pathways of Lymphocytes: The Role of PD-1 in Treg Development and Their Involvement in Autoimmunity Onset and Cancer Progression. Front Immunol. 2018; 9: 2374. doi: 10.3389/fimmu.2018.02374.

20. Dunne A., Marshall N.A., Mills K.H. TLR based therapeutics. Curr Opin Pharmacol. 2011; 11(4): 404–11. doi: 10.1016/j.coph.2011.03.004.

21. Law A.M.K., Valdes-Mora F., Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells. 2020; 9(3): 561. doi: 10.3390/cells9030561.

22. Orillion A., Hashimoto A., Damayanti N., Shen L., AdelaiyeOgala R., Arisa S., Chintala S., Ordentlich P., Kao C., Elzey B., Gabrilovich D., Pili R. Entinostat Neutralizes Myeloid-Derived Suppressor Cells and Enhances the Antitumor Effect of PD-1 Inhibition in Murine Models of Lung and Renal Cell Carcinoma. Clin Cancer Res. 2017; 23(17): 5187–5201. doi: 10.1158/1078-0432.CCR-17-0741.

23. Singh S., Kumar N.K., Dwiwedi P., Charan J., Kaur R., Sidhu P., Chugh V.K. Monoclonal Antibodies: A Review. Curr Clin Pharmacol. 2018; 13(2): 85–99. doi: 10.2174/1574884712666170809124728.

24. Seledtsov V.I., Seledtsova G.V. Attaining threshold antibody cytotoxicity for selective tumor cell destruction: an opinion article. Oncotarget. 2018; 9(87): 35790–4. doi:10.18632/oncotarget.26271.

25. Kantoff P.W., Higano C.S., Shore N.D., Berger E.R., Small E.J., Penson D.F., Redfern C.H., Ferrari A.C., Dreicer R., Sims R.B., Xu Y., Frohlich M.W., Schellhammer P.F.; IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010; 363(5): 411–22. doi: 10.1056/NEJMoa1001294.

26. Lopes A., Vandermeulen G., Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res. 2019; 38(1): 146. doi: 10.1186/s13046-019-1154-7.

27. Seledtsova G.V., Shishkov A.A., Kaschenko E.A., Seledtsov V.I. Xenogeneic cell-based vaccine therapy for colorectal cancer: Safety, association of clinical effects with vaccine-induced immune responses. Biomed Pharmacother. 2016; 83: 1247–52. doi: 10.1016/j.biopha.2016.08.050.

28. Seledtsova G.V., Shishkov A.A., Kaschenko E.A., Goncharov A.G., Gazatova N.D., Seledtsov V.I. Xenogeneic cell-based vaccine therapy for stage III melanoma: safety, immune-mediated responses and survival benefits. Eur J Dermatol. 2016; 26(2): 138–43. doi: 10.1684/ejd.2016.2733.

29. Gordeeva O. Cancer-testis antigens: Unique cancer stem cell biomarkers and targets for cancer therapy. Semin Cancer Biol. 2018; 53: 75–89. doi: 10.1016/j.semcancer.2018.08.006.

30. Chiang C.L., Kandalaft L.E., Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int Rev Immunol. 2011; 30(2–3): 150–82. doi: 10.3109/08830185.2011.572210.

31. Müller E., Speth M., Christopoulos P.F., Lunde A., Avdagic A., Øynebråten I., Corthay A. Both Type I and Type II Interferons Can Activate Antitumor M1 Macrophages When Combined With TLR Stimulation. Front Immunol. 2018; 9: 2520. doi: 10.3389/fimmu.2018.02520.

32. Sanmamed M.F., Pastor F., Rodriguez A., Perez-Gracia J.L., Rodriguez-Ruiz M.E., Jure-Kunkel M., Melero I.Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol. 2015; 42(4): 640–55. doi: 10.1053/j.seminoncol.2015.05.014.

33. Starzer A.M., Berghoff A.S. New emerging targets in cancer immunotherapy: CD27 (TNFRSF7). ESMO Open. 2020; 4(3). doi: 10.1136/esmoopen-2019-000629.

34. Schirrmacher V. Cancer vaccines and oncolytic viruses exert profoundly lower side effects in cancer patients than other systemic therapies: a comparative analysis. Biomedicines. 2020; 8(3): 61. doi:10.3390/biomedicines8030061.

35. Dobosz P., Dzieciątkowski T. The intriguing history of cancer immunotherapy. Front Immunol. 2019; 10: 2965. doi:10.3389/fimmu.2019.02965.

36. Hamid O., Ismail R., Puzanov I. Intratumoral ImmunotherapyUpdate 2019. Oncologist. 2020; 25(3): 423–38. doi: 10.1634/theoncologist.2019-0438.

37. Cheng L., Wang Y., Huang L. Exosomes from M1-Polarized Macrophages Potentiate the Cancer Vaccine by Creating a Pro-inflammatory Microenvironment in the Lymph Node. Mol Ther. 2017; 25(7): 1665–75. doi: 10.1016/j.ymthe.2017.02.007.

38. Lugini L., Cecchetti S., Huber V., Luciani F., Macchia G., Spadaro F., Paris L., Abalsamo L., Colone M., Molinari A., Podo F., Rivoltini L., Ramoni C., Fais S. Immune surveillance properties of human NK cellderived exosomes. J Immunol. 2012; 189(6): 2833–42. doi: 10.4049/jimmunol.1101988.

39. Im H., Lee K., Weissleder R., Lee H., Castro C.M. Novel nanosensing technologies for exosome detection and profiling. Lab Chip. 2017; 17(17): 2892–8. doi:10.1039/c7lc00247e.

40. Van Wilpe S., Koornstra R., Den Brok M., De Groot J.W., Blank C., De Vries J., Gerritsen W., Mehra N. Lactate dehydrogenase: a marker of diminished antitumor immunity. Oncoimmunology. 2020; 9(1): 1731942. doi: 10.1080/2162402X.2020.1731942.

41. Davis-Yadley A.H., Malafa M.P. Vitamins in pancreatic cancer: a review of underlying mechanisms and future applications. Adv Nutr. 2015; 6(6): 774–802. doi: 10.3945/an.115.009456.

42. Shrivastava P., Singh S.M., Singh N.Activation of tumor-associated macrophages by thymosin alpha 1. Int J Immunopathol Pharmacol. 2004; 17(1): 39–47. doi: 10.1177/039463200401700106.

43. Zhukova G.V., Schikhlyarova A.I., Barteneva T.A., Shevchenko A.N., Zakharyuta F.M. Effect of Thymalin on the Tumor and Thymus under Conditions of Activation Therapy In Vivo. Bull Exp Biol Med. 2018; 165(1): 80–3. doi: 10.1007/s10517-018-4104-z.

44. Mascanfroni I., Montesinos Mdel M., Susperreguy S., Cervi L., Ilarregui J.M., Ramseyer V.D., Masini-Repiso A.M., Targovnik H.M., Rabinovich G.A., Pellizas C.G. Control of dendritic cell maturation and function by triiodothyronine. FASEB J. 2008; 22(4): 1032–42. doi: 10.1096/fj.07-8652com.

45. Kelley K.W., Weigent D.A., Kooijman R. Protein hormones and immunity. Brain Behav Immun. 2007; 21(4): 384–92. doi: 10.1016/j.bbi.2006.11.010.

46. Sekirov I., Russell S.L., Antunes L.C., Finlay B.B. Gut microbiota in health and disease. Physiol Rev. 2010; 90(3): 859–904. doi: 10.1152/physrev.00045.2009.

47. Christofi T., Baritaki S., Falzone L., Libra M., Zaravinos A. Current Perspectives in Cancer Immunotherapy. Cancers (Basel). 2019; 11(10): 1472. doi: 10.3390/cancers11101472.

48. Spranger S., Gajewski T. Rational combinations of immunotherapeutics that target discrete pathways. J Immunother Cancer. 2013; 1: 16. doi: 10.1186/2051-1426-1-16.

49. Bashraheel S.S., Domling A., Goda S.K. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother. 2020; 125: 110009. doi: 10.1016/j.biopha.2020.110009.

50. Cheng Y., Weng S., Yu L., Zhu N., Yang M., Yuan Y. The Role of Hyperthermia in the Multidisciplinary Treatment of Malignant Tumors. Integr Cancer Ther. 2019; 18. doi: 10.1177/1534735419876345.

51. Quail D.F., Joyce J.A. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013; 19(11): 1423–37. doi: 10.1038/nm.3394.

52. Jahanban-Esfahlan R., Seidi K., Manjili M.H., Jahanban-Esfahlan A., Javaheri T., Zare P. Tumor Cell Dormancy: Threat or Opportunity in the Fight against Cancer. Cancers (Basel). 2019; 11(8): 1207. doi: 10.3390/cancers11081207.

53. Wang H.F., Wang S.S., Huang M.C., Liang X.H., Tang Y.J., Tang Y.L. Targeting Immune-Mediated Dormancy: A Promising Treatment of Cancer. Front Oncol. 2019; 9: 498. doi: 10.3389/fonc.2019.00498.

54. Ma Y., Wang Q., Dong Q., Zhan L., Zhang J. How to differentiate pseudoprogression from true progression in cancer patients treated with immunotherapy. Am J Cancer Res. 2019; 9(8): 1546–53.

55. Uribe-Querol E., Rosales C. Neutrophils in Cancer: Two Sides of the Same Coin. J Immunol Res. 2015. doi: 10.1155/2015/983698.

56. Caruso R.A., Bellocco R., Pagano M., Bertoli G., Rigoli L., Inferrera C. Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol. 2002; 15(8): 831–7. doi: 10.1097/01.MP.0000020391.98998.6B.


Рецензия

Для цитирования:


Селедцов В.И., Селедцова Г.В., Доржиева А.Б., Иванова И.П. Иммунотерапия в комплексном лечении опухолевых заболеваний. Сибирский онкологический журнал. 2022;21(2):118-129. https://doi.org/10.21294/1814-4861-2022-21-2-118-129

For citation:


Seledtsov V.I., Seledtsova G.V., Dorzhieva A.B., Ivanova I.P. Immunotherapy in the complex treatment of tumor diseases. Siberian journal of oncology. 2022;21(2):118-129. (In Russ.) https://doi.org/10.21294/1814-4861-2022-21-2-118-129

Просмотров: 135


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)