Methylation of p53-responsive oncosuppressive microRNA genes in hemoblastosis
https://doi.org/10.21294/1814-4861-2022-21-2-130-142
Abstract
The purpose of the study was to present up-to-date data on the frequency and significance of a number of p53-responsive oncosuppressive micrornas genes methylation in malignant neoplasms of the blood system.
Material and methods. The search for available literary sources published in the Pubmed and RISC databases was carried out. A total of 399 articles were found, of which 62 were included in this review.
Results. The p53 protein regulates a whole class of microRNAs – highly conserved small RNA molecules that affect gene expression mainly by suppressing translation. МicroRNAs play an important role in all cellular processes and can have both oncosuppressive and pro-oncogenic properties. Impaired expression of p53-activated oncosuppressive micrornas in various tumors may be associated with specific epigenetic mechanisms (DNA methylation and histone deacetylation). The review examines the molecular and genetic characteristics of oncosuppressive micrornas functioning in normal hematopoiesis, the violation of expression of which is shown in the development of hemoblastoses, namely: miR-34a, miR-34b/c, miR-145, miR-143 and miR-203. It is known that the transcription of the genes of these microRNAs is carried out and regulated from their own promoters. The latest published research results on the diagnostic, prognostic and clinical significance of gene methylation of the microRNAs under consideration in malignant neoplasms of the blood system are presented. According to literature data, common targets for mir-34a, mir-34b/c, mir-145, mir-143 and miR-203 microRNAs are mRNAs of a number of pro-oncogenes, namely: transcription factor C-MYC, positive cell cycle regulators at the G1/S transition point of CDK4, CDK6 and CYCLIN-D1 phases, anti-apoptotic proteins MDM2, MDM4, BCL2 and MCL1, as well as DNMT3A and DNMT3B methyltransferases and other molecules. In this regard, it should be noted that there are positive feedbacks between p53 and microRNAs activated by it, as well as negative feedbacks between p53-responsive micrornas and C-MYC and DNA methyltransferases.
Conclusion. Thus, the data presented in the review clarify the current understanding of the work of the regulatory network of the p53 protein and the micrornas activated by it, and also emphasize the functional association of p53-responsive microRNAs.
Keywords
About the Authors
E. N. VoropaevaRussian Federation
MD, DSc, Senior Researcher, Laboratory of Molecular Genetic Studies of Therapeutic Diseases
Researcher ID (WOS): A-5360-2014. Author ID (Scopus): 36020818100
175/1, Boris Bogatkov st., 630089, Novosibirsk, Russia
T. I. Pospelova
Russian Federation
MD, Professor, Head of the Department of Therapy, Hematology and Transfusiology
Author ID (Scopus): 7005792562
52, Red Ave., 630091, Novosibirsk, Russia
O. V. Berezina
Russian Federation
MD, PhD, Assistant, Department of Therapy, Hematology and Transfusiology
Researcher ID (WOS): AAK-3117-2020. Author ID (Scopus): 36605828400
52, Red Ave., 630091, Novosibirsk, Russia
M. I. Churkina
Russian Federation
MD, Postgraduate, Department of Therapy, Hematology and Transfusiology
Researcher ID (WOS): AAН-6058-2021. Author ID (Scopus): 57219706690
52, Red Ave., 630091, Novosibirsk, Russia
A. A. Gurazheva
Russian Federation
Junior Researcher, Laboratory of Molecular Genetic Studies of Therapeutic Diseases
175/1, Boris Bogatkov st., 630089, Novosibirsk, Russia
V. N. Maksimov
Russian Federation
MD, Professor, Head of the Laboratory of Molecular-genetic Methods for the Study of Therapeutic Diseases
Researcher ID (WOS): H-7676-2012. Author ID (Scopus): 7202540327
175/1, Boris Bogatkov st., 630089, Novosibirsk, Russia
References
1. Bondada M.S., Yao Y., Nair V. Multifunctional miR-155 Pathway in Avian Oncogenic Virus-Induced Neoplastic Diseases. Noncoding RNA. 2019; 5(1): 24. doi: 10.3390/ncrna5010024.
2. Jurj A., Pop L., Petrushev B., Pasca S., Dima D., Frinc I., Deak D., Desmirean M., Trifa A., Fetica B., Gafencu G., Selicean S., Moisoiu V., Micu W.T., Berce C., Sacu A., Moldovan A., Colita A., Bumbea H., Tanase A., Dascalescu A., Zdrenghea M., Stiufiuc R., Leopold N., Tetean R., Burzo E., Tomuleasa C., Berindan-Neagoe I. Exosome-carried microRNA-based signature as a cellular trigger for the evolution of chronic lymphocytic leukemia into Richter syndrome. Crit Rev Clin Lab Sci. 2018; 55(7): 501–15. doi: 10.1080/10408363.2018.1499707.
3. Hannafon B.N., Ding W.Q. Functional Role of miRNAs in the Progression of Breast Ductal Carcinoma in Situ. Am J Pathol. 2019; 189(5): 966–74. doi: 10.1016/j.ajpath.2018.06.025.
4. Holubekova V., Mendelova A., Jasek K., Mersakova S., Zubor P., Lasabova Z. Epigenetic regulation by DNA methylation and miRNA molecules in cancer. Future Oncol. 2017; 13(25): 2217–22. doi: 10.2217/fon-2017-0363.
5. Klein U., Lia M., Crespo M., Crespo M., Siegel R., Shen Q., Mo T., Ambesi-ImpiombatoA., Califano A.,MigliazzaA.,BhagatG.,Dalla-FaveraR. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010; 17(1): 28–40. doi: 10.1016/j.ccr.2009.11.019.
6. Larrabeiti-Etxebarria A., Lopez-Santillan M., Santos-Zorrozua B., Lopez-Lopez E., Garcia-Orad A. Systematic Review of the Potential of MicroRNAs in Diffuse Large B Cell Lymphoma. Cancers (Basel). 2019; 11(2): 144. doi: 10.3390/cancers11020144.
7. Cui B., Chen L., Zhang S., Mraz M., Fecteau J.F., Yu J., Ghia E.M., Zhang L., Bao L., Rassenti L.Z., Messer K., Calin G.A., Croce C.M., Kipps T.J. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood. 2014; 124(4): 546–54. doi: 10.1182/blood-2014-03-559690.
8. Baylin S.B., Jones P.A. Epigenetic Determinants of Cancer. Cold Spring Harb Perspect Biol. 2016; 8(9). doi: 10.1101/cshperspect.a019505.
9. Daniunaite K., Dubikaityte M., Gibas P., Bakavicius A., Lazutka R.J., Ulys A., Jankevicius F., Jarmalaite S. Clinical significance of miRNA host gene promoter methylation in prostate cancer. Hum Mol Genet. 2017; 26(13): 2451–61. doi: 10.1093/hmg/ddx138.
10. Strmsek Z., Kunej T. MicroRNA Silencing by DNA Methylation in Human Cancer: a Literature Analysis. Noncoding RNA. 2015; 1(1): 44–52. doi: 10.3390/ncrna1010044.
11. Walter R.F., Vollbrecht C., Werner R., Wohlschlaeger J., Christoph D.C., Schmid K.W., Mairinger F.D. microRNAs are differentially regulated between MDM2-positive and negative malignant pleural mesothelioma. Oncotarget. 2016; 7(14): 18713–21. doi: 10.18632/oncotarget.7666.
12. Wrighton K.H. Small RNAs: p53 makes microRNAs mature. Nat Rev Mol Cell Biol. 2009; 10(9): 580–1. doi: 10.1038/nrm2749.
13. Voropaeva E.N., Pospelova T.I., Voevoda M.I., Maksimov V.N., Orlov Y.L., Seregina O.B. Clinical aspects of TP53 gene inactivation in diffuse large B-cell lymphoma. BMC Med Genomics. 2019; 12(2): 35. doi: 10.1186/s12920-019-0484-9.
14. Al’-Radi L.G., Baryakh E.A., Belousova I.E., Bessmel’tsev S.S., Vorob’ev V.I., Votyakova O.M., Gubkin A.V., Demina E.A., Doronin V.A., Zheludkova O.G., Zagoskina T.P., Korobkin A.V., Kravchenko S.K., Kuz’min A.A., Lopatkina T.N., Lorie Yu.Yu., Lugovskaya S.A., Mendeleeva L.P., Mikhailova N.B., Moiseeva T.N., Mukhortova O.V., Nikitin E.A., Osmanov E.A., Pivnik A.V., Poddubnaya I.V., Pospelova T.I., Ptushkin V.V., Samoilova O.S., Samochatova E.V., Stadnik E.A., Stefanov D.N., Tumyan G.S., Shatokhin Yu.V., Shmakov R.G. Clinical guidelines for the diagnosis and treatment of lymphoproliferative diseases. Moscow, 2014. 288 p. (in Russian).
15. Lozano G. The oncogenic roles of p53 mutants in mouse models. Curr Opin Gen Dev. 2007; 17(1): 66–70. doi: 10.1016/j.gde.2006.12.003.
16. Solé C., Larrea E., Di Pinto G., Tellaetxe M., Lawrie C.H. miRNAs in B-cell lymphoma: Molecular mechanisms and biomarker potential. Cancer Lett. 2017; 405: 79–89. doi: 10.1016/j.canlet.2017.07.020.
17. Solé C., Arnaiz E., Lawrie C.H. MicroRNAs as Biomarkers of B-cell Lymphoma. Biomark Insights. 2018; 13. doi: 10.1177/1177271918806840.
18. Sachdeva M., Zhu S., Wu F., Wu H., Walia V., Kumar S., Elble R., Watabe K., Mo Y.Y. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA. 2009; 106(9): 3207–12. doi: 10.1073/pnas.0808042106.
19. Pidíkova P., Reis R., Herichova I. miRNA Clusters with DownRegulated Expression in Human Colorectal Cancer and Their Regulation. Int J Mol Sci. 2020; 21(13): 4633. doi: 10.3390/ijms21134633.
20. Suzuki H.I., Yamagata K., Sugimoto K., Iwamoto T., Kato S., Miyazono K. Modulation of microRNA processing by p53. Nature. 2009; 460(7254): 529–33. doi: 10.1038/nature08199.
21. Xu N., Papagiannakopoulos T., Pan G., Thomson J.A., Kosik K.S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009; 137(4): 647–58. doi: 10.1016/j.cell.2009.02.038.
22. Go H., Jang J.Y., Kim C.W., Huh J., Kim P.J., Jeon Y.K. Identification of microRNAs modulated by DNA hypomethylating drugs in extranodal NK/T-cell lymphoma. Leuk Lymphoma. 2020; 61(1): 66–74. doi: 10.1080/10428194.2019.1654096.
23. Hao S., Huo S., Du Z., Yang Q., Ren M., Liu S., Liu T., Zhang G. MicroRNA-related transcription factor regulatory networks in human colorectal cancer. Medicine (Baltimore). 2019; 98(15). doi: 10.1097/MD.0000000000015158.
24. Chen W.Y., Lang Z.Q., Ren C., Yang P., Zhang B. miR-143 acts as a novel Big mitogen-activated protein kinase 1 suppressor and may inhibit invasion of glioma. Oncol Rep. 2019; 42(3): 1194–204. doi: 10.3892/or.2019.7218.
25. Manvati S., Mangalhara K.C., Kalaiarasan P., Chopra R., Agarwal G., Kumar R., Saini S.K., Kaushik M., Arora A., Kumari U., Bamezai R.N.K., Dhar P.K. miR-145 supports cancer cell survival and shows association with DDR genes, methylation pattern, and epithelial to mesenchymal transition. Cancer Cell Int. 2019; 19: 230. doi: 10.1186/ s12935-019-0933-8.
26. Shen W.F., Hu Y.L., Uttarwar L., Passegue E., Largman C. MicroRNA-126 regulates HOXA9 by binding to the homeobox. Mol Cell Biol. 2008; 28(14): 4609–19. doi: 10.1128/MCB.01652-07.
27. Tan L.P., Wang M., Robertus J.L., Schakel R.N., Gibcus J.H., Diepstra A., Harms G., Peh S.C., Reijmers R.M., Pals S.T., Kroesen B.J., Kluin P.M., Poppema S., van den Berg A. miRNA profiling of B-cell subsets: specific miRNA profile for germinal center B cells with variation between centroblasts and centrocytes. Lab Invest. 2009; 89(6): 708–16. doi: 10.1038/labinvest.2009.26.
28. Akao Y., Nakagawa Y., Kitade Y., Kinoshita T., Naoe T. Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci. 2007; 98(12): 1914–20. doi: 10.1111/j.1349-7006.2007.00618.x.
29. Roehle A., Hoefig K.P., Repsilber D., Thorns C., Ziepert M., Wesche K.O., Thiere M., Loeffler M., Klapper W., Pfreundschuh M., Matolcsy A., Bernd H.W., Reiniger L., Merz H., Feller A.C. MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br J Haematol. 2008; 142(5): 732–44. doi: 10.1111/j.1365-2141.2008.07237.x.
30. Fischer L., Hummel M., Korfel A., Lenze D., Joehrens K., Thiel E. Differential micro-RNA expression in primary CNS and nodal diffuse large B-cell lymphomas. Neuro Oncol. 2011; 13(10): 1090–8. doi: 10.1093/neuonc/nor107.
31. Xia H., Yamada S., Aoyama M., Sato F., Masaki A., Ge Y., Ri M., Ishida T., Ueda R., Utsunomiya A., Asai K., Inagaki H. Prognostic impact of microRNA-145 down-regulation in adult T-cell leukemia/lymphoma. Hum Pathol. 2014; 45(6): 1192–8. doi: 10.1016/j.humpath.2014.01.017.
32. Wu H., Liu C., Yang Q., Xin C., Du J., Sun F., Zhou L. MIR145-3p promotes autophagy and enhances bortezomib sensitivity in multiple myeloma by targeting HDAC4. Autophagy. 2020; 16(4): 683–97. doi: 10.1080/15548627.2019.1635380.
33. Liu J., Li M., Wang Y., Luo J. Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition. J Drug Target. 2017; 25(7): 645–52. doi: 10.1080/1061186X.2017.1315686.
34. Liu S.Y., Li X.Y., Chen W.Q., Hu H., Luo B., Shi Y.X., Wu T.W., Li Y., Kong Q.Z., Lu H.D., Lu Z.X. Demethylation of the MIR145 promoter suppresses migration and invasion in breast cancer. Oncotarget. 2017; 8(37): 61731–41. doi: 10.18632/oncotarget.18686.
35. Chim C.S., Wong K.Y., Qi Y., Loong F., Lam W.L., Wong L.G., Jin D.Y., Costello J.F., Liang R. Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis. 2010; 31(4): 745–50. doi: 10.1093/carcin/bgq033.
36. Asmar F., Hother C., Kulosman G., Treppendahl M.B., Nielsen H.M., Ralfkiaer U., Pedersen A., Møller M.B., Ralfkiaer E., de Nully Brown P., Grønbæk K. Diffuse large B-cell lymphoma with combined TP53 mutation and MIR34A methylation: Another «double hit» lymphoma with very poor outcome? Oncotarget. 2014; 5(7): 1912–25. doi: 10.18632/oncotarget.1877.
37. Naghizadeh S., Mohammadi A., Duijf P.H.G., Baradaran B., Safarzadeh E., Cho W.C., Mansoori B. The role of miR-34 in cancer drug resistance. J Cell Physiol. 2020; 235(10): 6424–40. doi: 10.1002/jcp.29640.
38. Zhang L., Liao Y., Tang L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res. 2019; 38(1): 53. doi: 10.1186/s13046-019-1059-5.
39. Xiong S., Hu M., Li C., Zhou X., Chen H. Role of miR-34 in gastric cancer: From bench to bedside (Review). Oncol Rep. 2019; 42(5): 1635–46. doi: 10.3892/or.2019.7280.
40. Van Roosbroeck K., Calin G.A. MicroRNAs in chronic lymphocytic leukemia: miRacle or miRage for prognosis and targeted therapies? Semin Oncol. 2016; 43(2): 209–14. doi: 10.1053/j.seminoncol.2016.02.015.
41. Peng D., Wang H., Li L., Ma X., Chen Y., Zhou H., Luo Y., Xiao Y., Liu L. miR-34c-5p promotes eradication of acute myeloid leukemia stem cells by inducing senescence through selective RAB27B targeting to inhibit exosome shedding. Leukemia. 2018; 32(5): 1180–8. doi: 10.1038/s41375-018-0015-2.
42. Craig V.J., Cogliatti S.B., Imig J., Renner C., Neuenschwander S., Rehrauer H., Schlapbach R., Dirnhofer S., Tzankov A., Müller A. Mycmediated repression of microRNA-34a promotes high-grade transformation of B-cell lymphoma by dysregulation of FoxP1. Blood. 2011; 117(23): 6227–36. doi: 10.1182/blood-2010-10-312231.
43. Craig V.J., Tzankov A., Flori M., Schmid C.A., Bader A.G., Müller A. Systemic microRNA-34a delivery induces apoptosis and abrogates growth of diffuse large B-cell lymphoma in vivo. Leukemia. 2012; 26(11): 2421–4. doi: 10.1038/leu.2012.110.
44. Leucci E., Cocco M., Onnis A., De Falco G., van Cleef P., Bellan C., van Rijk A., Nyagol J., Byakika B., Lazzi S., Tosi P., van Krieken H., Leoncini L. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol. 2008; 216(4): 440–50. doi: 10.1002/path.2410.
45. Zarone M.R., Misso G., Grimaldi A., Zappavigna S., Russo M., Amler E., Di Martino M.T., Amodio N., Tagliaferri P., Tassone P., Caraglia M. Evidence of novel miR-34a-based therapeutic approaches for multiple myeloma treatment. Sci Rep. 2017; 7(1): 17949. doi: 10.1038/s41598-017-18186-0.
46. Navarro A., Díaz T., Cordeiro A., Beyá M.D., Ferrer G., Fuster D., Martinez A., Monzó M. Epigenetic regulation of microRNA expression in Hodgkin lymphoma. Leuk Lymphoma. 2015; 56(9): 2683–9. doi: 10.3109/10428194.2014.995650.
47. Roman-Gomez J., Agirre X., Jiménez-Velasco A., Arqueros V., Vilas-Zornoza A., Rodriguez-Otero P., Martin-Subero I., Garate L., Cordeu L., San José-Eneriz E., Martin V., Castillejo J.A., Bandrés E., Calasanz M.J., Siebert R., Heiniger A., Torres A., Prosper F. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol. 2009; 27(8): 1316–22. doi: 10.1200/JCO.2008.19.3441.
48. Chakraborty C., Sharma A.R., Patra B.C., Bhattacharya M., Sharma G., Lee S.S. MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget. 2016; 7(27): 42683–97. doi: 10.18632/oncotarget.7977.
49. Salazar-Roa M., Trakala M., Álvarez-Fernández M., Valdés-Mora F., Zhong C., Muñoz J., Yu Y., Peters T.J., Graña-Castro O., Serrano R., Zapatero-Solana E., Abad M., Bueno M.J., Gómez de Cedrón M., Fernández-Piqueras J., Serrano M., Blasco M.A., Wang D.Z., Clark S.J., Izpisua-Belmonte J.C., Ortega S., Malumbres M. Transient exposure to miR-203 enhances the differentiation capacity of established pluripotent stem cells. EMBO J. 2020; 39(16). doi: 10.15252/embj.2019104324.
50. Braga E.A., Fridman M.V., Loginov V.I., Dmitriev A.A., Morozov S.G. Molecular Mechanisms in Clear Cell Renal Cell Carcinoma: Role of miRNAs and Hypermethylated miRNA Genes in Crucial Oncogenic Pathways and Processes. Front Genet. 2019; 10: 320. doi: 10.3389/fgene.2019.00320.
51. Funamizu N., Lacy C.R., Kamada M., Yanaga K., Manome Y. MicroRNA-203 induces apoptosis by upregulating Puma expression in colon and lung cancer cells. Int J Oncol. 2015; 47(5): 1981–8. doi: 10.3892/ijo.2015.3178.
52. Schoof C.R.G., Izzotti A., Jasiulionis M.G., dos Reis VasquesL. The Roles of miR-26, miR-29, and miR-203 in the Silencing of the Epigenetic Machinery during Melanocyte Transformation. Biomed Res Int. 2015. doi: 10.1155/2015/634749.
53. Benati M., Montagnana M., Danese E., Paviati E., Giudici S., Franchi M., Lippi G. Evaluation of mir-203 Expression Levels and DNA Promoter Methylation Status in Serum of Patients with Endometrial Cancer. Clin Lab. 2017; 63(10): 1675–81. doi: 10.7754/Clin.Lab.2017.170421.
54. Bueno M.J., Pérez de Castro I., Gómez de Cedrón M., Santos J., Calin G.A., Cigudosa J.C., Croce C.M., Fernández-Piqueras J., Malumbres M. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008; 13(6): 496–506. doi: 10.1016/j.ccr.2008.04.018.
55. Chim C.S., Wong K.Y., Leung C.Y., Chung L.P., Hui P.K., Chan S.Y., Yu L. Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. J Cell Mol Med. 2011; 15(12): 2760–7. doi: 10.1111/j.1582-4934.2011.01274.x.
56. Shibuta T., Honda E., Shiotsu H., Tanaka Y., Vellasamy S., Shiratsuchi M., Umemura T. Imatinib induces demethylation of miR-203 gene: an epigenetic mechanism of anti-tumor effect of imatinib. Leuk Res. 2013; 37(10): 1278–86. doi: 10.1016/j.leukres.2013.07.019.
57. Wong K.Y., Liang R., So C.C., Jin D.Y., Costello J.F., Chim C.S. Epigenetic silencing of MIR203 in multiple myeloma. Br J Haematol. 2011; 154(5): 569–78. doi: 10.1111/j.1365-2141.2011.08782.x.
58. Basso K., Saito M., Sumazin P., Margolin A.A., Wang K., Lim W.K., Kitagawa Y., Schneider C., Alvarez M.J., Califano A., Dalla-Favera R. Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood. 2010; 115(5): 975–84. doi: 10.1182/blood-2009-06-227017.
59. Zhao L., Samuels T., Winckler S., Korgaonkar C., Tompkins V., Horne M.C., Quelle D.E. Cyclin G1 has growth inhibitory activity linked to the ARF-Mdm2-p53 and pRb tumor suppressor pathways. Mol Cancer Res. 2003; 1(3): 195–206.
60. Gagliardi M., Strazzullo M., Matarazzo M.R. DNMT3B Functions: Novel Insights From Human Disease. Front Cell Dev Biol. 2018; 6: 140. doi: 10.3389/fcell.2018.00140.
61. Veland N., Chen T. Mechanisms of DNA methylation and demethylation during mammalian development. In Handbook of Epigenetics: The New Molecular and Medical Genetics. 2017; 1: 11–24. doi: 10.1016/b978-0-12-805388-1.00002-x.
Review
For citations:
Voropaeva E.N., Pospelova T.I., Berezina O.V., Churkina M.I., Gurazheva A.A., Maksimov V.N. Methylation of p53-responsive oncosuppressive microRNA genes in hemoblastosis. Siberian journal of oncology. 2022;21(2):130-142. (In Russ.) https://doi.org/10.21294/1814-4861-2022-21-2-130-142