Preview

Siberian journal of oncology

Advanced search

Modern breast cancer therapy: from tamoxifen to T-cell engineering

https://doi.org/10.21294/1814-4861-2022-21-5-109-122

Abstract

The purpose of the study was to conduct a systematic literature review of high-technology methods in breast cancer treatment. Material and methods. To select information sources, a global search was used using the Web of Science, Scopus, PubMed, and RSCI databases. The search included the analysis of metadata by keywords, and relevant publications were used for full-text search. The review used 55 publications from 2001 to 2021. Most of the articles were published over the past 7 years. Results. Modern literature data presented in this review prove that long-term studies based on histological and immunological features of tumor development are very important for improving survival in breast cancer. Clinical treatment protocols that were based primarily on the anatomical characteristics of the disease are now switching to the biological mechanisms underlying carcinogenesis. Drugs targeting estrogen receptors play an important role in systemic therapy and make it possible to correct the mechanisms responsible for endocrine resistance. Targeted therapy targeting the HER2 receptor, especially in an antibody-drug conjugate combination, has associated cytotoxic therapy with anti-HER2 antibodies. Modern methods of biological therapy and cell engineering make it possible to develop methods for treating triple-negative breast cancer based on the regulation of the microenvironment, mechanisms of repair, immunosuppression, and the creation of a target from a larger repertoire of both surface and intracellular antigens. Conclusion. Promising strategies based on the use of signaling and metabolic pathways, cell surface molecules, and cell engineering increase the effectiveness of treatment and improve the progression-free and overall survival in breast cancer patients.

About the Authors

Yu. A. Shevchenko
Research Institute of Fundamental and Clinical Immunology
Russian Federation

 Yulia A. Shevchenko, PhD, Senior Researcher, Laboratory of Molecular Immunology

Researcher ID (WOS): O-3015-2013. Author ID (Scopus): 56712784500 

 14, Yadrintsevskaya st., 630099, Novosibirsk, Russia 



M. S. Kuznetsova
Research Institute of Fundamental and Clinical Immunology
Russian Federation

 Maria S. Kuznetsova, PhD, Researcher, Laboratory of Molecular Immunology

Researcher ID (WOS): A-4075-2014. Author ID (Scopus): 57192012202 

 14, Yadrintsevskaya st., 630099, Novosibirsk, Russia 



A. A. Khristin
Municipal Clinical Hospital No. 1
Russian Federation

 Alexandr A. Khristin, MD, Oncology Department

Author ID (Scopus): 56971468000 

 6, Zalessky st., 630047, Novosibirsk, Russia 



S. V. Sidorov
Municipal Clinical Hospital No. 1; Novosibirsk State University
Russian Federation

 Sergey V. Sidorov, MD, Professor, Head of Oncology Department; Head of Surgical Diseases of the Institute of Medicine and Psychology named after V. Zelman

Author ID (Scopus): 35873795500 

 6, Zalessky st., 630047, Novosibirsk, Russia 

1, Pirogova st., 630090, Novosibirsk, Russia



S. V. Sennikov
Research Institute of Fundamental and Clinical Immunology
Russian Federation

 Sergey V. Sennikov, MD, Professor, Head of Laboratory of Molecular Immunology

Researcher ID (WOS): O-2164-2013. Author ID (Scopus): 7004762032 

 14, Yadrintsevskaya st., 630099, Novosibirsk, Russia 



References

1. Emens L.A. Breast Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res. 2018; 24(3): 511–20. doi: 10.1158/1078-0432.CCR-16-3001.

2. Tashireva L.A., Gerashchenko T.S., Denisov E.V., Savelyeva O.E., Buzenkova A.V., Zavyalova M.V., Cherdyntseva N.V., Perelmuter V.M. Characterization of the ability of tumor cells of various morphological structures of invasive breast carcinoma to modulate immune-inflammatory responses. Problems in Oncology. 2020; 66(3): 270–6. (in Russian). doi: 10.37469/0507-3758-2020-66-3-270-276.

3. Gu G., Dustin D., Fuqua S.A. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Curr Opin Pharmacol. 2016; 31: 97–103. doi: 10.1016/j.coph.2016.11.005.

4. Rossi L., Pagani O. The Role of Gonadotropin-Releasing-Hormone Analogues in the Treatment of Breast Cancer. J Womens Health (Larchmt). 2018; 27(4): 466–75. doi: 10.1089/jwh.2017.6355.

5. Blackburn S.A., Parks R.M., Cheung K.L. Fulvestrant for the treatment of advanced breast cancer. Expert Rev Anticancer Ther. 2018; 18(7): 619–28. doi: 10.1080/14737140.2018.1473038.

6. Reinbolt R.E., Mangini N., Hill J.L., Levine L.B., Dempsey J.L., Singaravelu J., Koehler K.A., Talley A., Lustberg M.B. Endocrine therapy in breast cancer: the neoadjuvant, adjuvant, and metastatic approach. Semin Oncol Nurs. 2015; 31(2): 146–55. doi: 10.1016/j.soncn.2015.02.002.

7. Soleja M., Raj G.V., Unni N. An evaluation of fulvestrant for the treatment of metastatic breast cancer. Expert Opin Pharmacother. 2019; 20(15): 1819–29. doi: 10.1080/14656566.2019.1651293.

8. Gradishar W.J., Anderson B.O., Balassanian R., Blair S.L., Burstein H.J., Cyr A., Elias A.D., Farrar W.B., Forero A., Giordano S.H., Goetz M., Goldstein L.J., Hudis C.A., Isakoff S.J., Marcom P.K., Mayer I.A., McCormick B., Moran M., Patel S.A., Pierce L.J., Reed E.C., Salerno K.E., Schwartzberg L.S., Smith K.L., Smith M.L., Soliman H., Somlo G., Telli M., Ward J.H., Shead D.A., Kumar R. NCCN Guidelines Insights Breast Cancer, Version 1.2016. J Natl Compr Canc Netw. 2015; 13(12): 1475–85. doi: 10.6004/jnccn.2015.0176.

9. Yardley D.A., Noguchi S., Pritchard K.I., Burris H.A., Baselga J., Gnant M., Hortobagyi G.N., Campone M., Pistilli B., Piccart M., Melichar B., Petrakova K., Arena F.P., Erdkamp F., Harb W.A., Feng W., Cahana A., Taran T., Lebwohl D., Rugo H.S. Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv Ther. 2013; 30(10): 870–84. doi: 10.1007/s12325-013-0060-1. Erratum in: Adv Ther. 2014; 31(9): 1008–9.

10. Baselga J., Campone M., Piccart M., Burris H.A., Rugo H.S., Sahmoud T., Noguchi S., Gnant M., Pritchard K.I., Lebrun F., Beck J.T., Ito Y., Yardley D., Deleu I., Perez A., Bachelot T., Vittori L., Xu Z., Mukhopadhyay P., Lebwohl D., Hortobagyi G.N. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012; 366(6): 520–9. doi: 10.1056/NEJMoa1109653.

11. Dronova Т.A., Babyshkina N.N., Matvienko N.V., Slonimskaya E.M., Cherdyntseva N.V. PI3K/AKT/MTOR: contribution to the tumor phenotype sensitive to tamoxifen. Russian Journal of Biotherapy. 2021; 20(1): 16–23. (in Russian). doi: 10.17650/1726-9784-2021-20-1-16-23.

12. Vernieri C., Corti F., Nichetti F., Ligorio F., Manglaviti S., Zattarin E., Rea C.G., Capri G., Bianchi G.V., de Braud F. Everolimus versus alpelisib in advanced hormone receptor-positive HER2-negative breast cancer: targeting different nodes of the PI3K/AKT/mTORC1 pathway with different clinical implications. Breast Cancer Res. 2020; 22(1): 33. doi: 10.1186/s13058-020-01271-0.

13. O’Shaughnessy J., Thaddeus Beck J., Royce M. Everolimus-based combination therapies for HR+, HER2- metastatic breast cancer. Cancer Treat Rev. 2018; 69: 204–14. doi: 10.1016/j.ctrv.2018.07.013.

14. Finn R.S., Crown J.P., Lang I., Boer K., Bondarenko I.M., Kulyk S.O., Ettl J., Patel R., Pinter T., Schmidt M., Shparyk Y., Thummala A.R., Voytko N.L., Fowst C., Huang X., Kim S.T., Randolph S., Slamon D.J. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015; 16(1): 25–35. doi: 10.1016/S1470-2045(14)71159-3.

15. Kwapisz D. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Res Treat. 2017; 166(1): 41–54. doi: 10.1007/s10549-017-4385-3.

16. Masoud V., Pagès G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J Clin Oncol. 2017; 8(2): 120–34. doi: 10.5306/wjco.v8.i2.120.

17. Slamon D.J., Leyland-Jones B., Shak S., Fuchs H., Paton V., Bajamonde A., Fleming T., Eiermann W., Wolter J., Pegram M., Baselga J., Norton L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001; 344(11): 783–92. doi: 10.1056/NEJM200103153441101.

18. De P., Hasmann M., Leyland-Jones B. Molecular determinants of trastuzumab efficacy: What is their clinical relevance? Cancer Treat Rev. 2013; 39(8): 925–34. doi: 10.1016/j.ctrv.2013.02.006.

19. von Minckwitz G., Procter M., de Azambuja E., Zardavas D., Benyunes M., Viale G., Suter T., Arahmani A., Rouchet N., Clark E., Knott A., Lang I., Levy C., Yardley D.A., Bines J., Gelber R.D., Piccart M., Baselga J.; APHINITY Steering Committee and Investigators. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N Engl J Med. 2017; 377(2): 122–131. doi: 10.1056/NEJMoa1703643. Erratum in: N Engl J Med. 2017; 377(7): 702. Erratum in: N Engl J Med. 2018; 379(16): 1585.

20. Barok M., Joensuu H., Isola J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res. 2014; 16(2): 209. doi: 10.1186/bcr3621.

21. Duchnowska R., Loibl S., Jassem J. Tyrosine kinase inhibitors for brain metastases in HER2-positive breast cancer. Cancer Treat Rev. 2018; 67: 71–7. doi: 10.1016/j.ctrv.2018.05.004.

22. Bilancia D., Rosati G., Dinota A., Germano D., Romano R., Manzione L. Lapatinib in breast cancer. Ann Oncol. 2007; 18(6): 26–30. doi: 10.1093/annonc/mdm220.

23. Ferrara N., Gerber H.P., LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003; 9(6): 669–76. doi: 10.1038/nm0603-669.

24. Garcia J., Hurwitz H.I., Sandler A.B., Miles D., Coleman R.L., Deurloo R., Chinot O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat Rev. 2020; 86. doi: 10.1016/j.ctrv.2020.102017.

25. Turk A.A., Wisinski K.B. PARP inhibitors in breast cancer: Bringing synthetic lethality to the bedside. Cancer. 2018; 124(12): 2498–2506. doi: 10.1002/cncr.31307.

26. Fang B. Development of synthetic lethality anticancer therapeutics. J Med Chem. 2014; 57(19): 7859–73. doi: 10.1021/jm500415t.

27. Tsyganov M.M., Ibragimova M.K., Deryusheva I.V., Garbukov E.Yu., Kazantseva P.V., Pevzner A.M., Slonimskaya E.M., Litvyakov N.V. Prognostic significance of BRCA1 gene expression in patients with breast cancer. Problems in Oncology. 2019; 65(3): 368–73. (in Russian).

28. Bu X., Yao Y., Li X. Immune Checkpoint Blockade in Breast Cancer Therapy. Adv Exp Med Biol. 2017; 1026: 383–402. doi: 10.1007/978-981-10-6020-5_18.

29. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012; 12(4): 252–64. doi: 10.1038/nrc3239.

30. Polk A., Svane I.M., Andersson M., Nielsen D. Checkpoint inhibitors in breast cancer – Current status. Cancer Treat Rev. 2018; 63: 122–34. doi: 10.1016/j.ctrv.2017.12.008.

31. Lyons T.G. Targeted Therapies for Triple-Negative Breast Cancer. Curr Treat Options Oncol. 2019; 20(11): 82. doi: 10.1007/s11864-019-0682-x.

32. Mediratta K., El-Sahli S., D’Costa V., Wang L. Current Progresses and Challenges of Immunotherapy in Triple-Negative Breast Cancer. Cancers (Basel). 2020; 12(12): 3529. doi: 10.3390/cancers12123529.

33. Fuentes-Antrás J., Guevara-Hoyer K., Baliu-Piqué M., GarcíaSáenz J.Á., Pérez-Segura P., Pandiella A., Ocaña A.Adoptive Cell Therapy in Breast Cancer: A Current Perspective of Next-Generation Medicine. Front Oncol. 2020; 10. doi: 10.3389/fonc.2020.605633.

34. June C.H. Adoptive T cell therapy for cancer in the clinic. J Clin Invest. 2007; 117(6): 1466–76. doi: 10.1172/JCI32446.

35. Wright S.E. Immunotherapy of breast cancer. Expert Opin Biol Ther. 2012; 12(4): 479–90. doi: 10.1517/14712598.2012.665445.

36. Ueno N.T., Rizzo J.D., Demirer T., Cheng Y.C., Hegenbart U., Zhang M.J., Bregni M., Carella A., Blaise D., Bashey A., Bitran J.D., Bolwell B.J., Elfenbein G.J., Fields K.K., Freytes C.O., Gale R.P., Lazarus H.M., Champlin R.E., Stiff P.J., Niederwieser D.Allogeneic hematopoietic cell transplantation for metastatic breast cancer. Bone Marrow Transplant. 2008; 41(6): 537–45. doi: 10.1038/sj.bmt.1705940.

37. Wei J., Han X., Bo J., Han W. Target selection for CAR-T therapy. J Hematol Oncol. 2019; 12(1): 62. doi: 10.1186/s13045-019-0758-x.

38. Xie Y., Hu Y., Zhou N., Yao C., Wu L., Liu L., Chen F. CAR T-cell therapy for triple-negative breast cancer: Where we are. Cancer Lett. 2020; 491: 121–31. doi: 10.1016/j.canlet.2020.07.044.

39. Dees S., Ganesan R., Singh S., Grewal I.S. Emerging CAR-T Cell Therapy for the Treatment of Triple-Negative Breast Cancer. Mol Cancer Ther. 2020; 19(12): 2409–21. doi: 10.1158/1535-7163.MCT-20-0385.

40. Li Z., Qiu Y., Lu W., Jiang Y., Wang J. Immunotherapeutic interventions of Triple Negative Breast Cancer. J Transl Med. 2018; 16(1): 147. doi: 10.1186/s12967-018-1514-7.

41. Zhou R., Yazdanifar M., Roy L.D., Whilding L.M., Gavrill A., Maher J., Mukherjee P. CAR T Cells Targeting the Tumor MUC1 Glycoprotein Reduce Triple-Negative Breast Cancer Growth. Front Immunol. 2019; 10: 1149. doi: 10.3389/fimmu.2019.01149. Erratum in: Front Immunol. 2020; 11.

42. Posey A.D. Jr, Schwab R.D., Boesteanu A.C., Steentoft C., Mandel U., Engels B., Stone J.D., Madsen T.D., Schreiber K., Haines K.M., Cogdill A.P., Chen T.J., Song D., Scholler J., Kranz D.M., Feldman M.D., Young R., Keith B., Schreiber H., Clausen H., Johnson L.A., June C.H. Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity. 2016; 44(6): 1444–54. doi: 10.1016/j.immuni.2016.05.014.

43. Hu W., Zi Z., Jin Y., Li G., Shao K., Cai Q., Ma X., Wei F. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother. 2019; 68(3): 365–77. doi: 10.1007/s00262-018-2281-2.

44. Zhao X., Qu J., Hui Y., Zhang H., Sun Y., Liu X., Zhao X., Zhao Z., Yang Q., Wang F., Zhang S. Clinicopathological and prognostic significance of c-Met overexpression in breast cancer. Oncotarget. 2017; 8(34): 56758–67. doi: 10.18632/oncotarget.18142.

45. Crowther M.D., Svane I.M., Met Ö. T-Cell Gene Therapy in Cancer Immunotherapy: Why It Is No Longer Just CARs on The Road. Cells. 2020; 9(7): 1588. doi: 10.3390/cells9071588.

46. Zhao L., Cao Y.J. Engineered T Cell Therapy for Cancer in the Clinic. Front Immunol. 2019; 10: 2250. doi: 10.3389/fimmu.2019.02250.

47. Li X., Bu X. Progress in Vaccine Therapies for Breast Cancer. Adv Exp Med Biol. 2017; 1026: 315–30. doi: 10.1007/978-981-10-6020-5_15.

48. Kuznetsova M., Lopatnikova J., Shevchenko J., Silkov A., Maksyutov A., Sennikov S. Cytotoxic Activity and Memory T Cell Subset Distribution of in vitro-Stimulated CD8+ T Cells Specific for HER2/neu Epitopes. Front Immunol. 2019; 10: 1017. doi: 10.3389/fimmu.2019.01017.

49. Shevchenko J.A., Khristin A.A., Kurilin V.V., Kuznetsova M.S., Blinova D.D., Starostina N.M., Sidorov S.V., Sennikov S.V.Autologous dendritic cells and activated cytotoxic T-cells as combination therapy for breast cancer. Oncol Rep. 2020; 43(2): 671–80. doi: 10.3892/or.2019.7435.

50. Hu W., Wang G., Huang D., Sui M., Xu Y. Cancer Immunotherapy Based on Natural Killer Cells: Current Progress and New Opportunities. Front Immunol. 2019; 10: 1205. doi: 10.3389/fimmu.2019.01205.

51. Wu S.Y., Fu T., Jiang Y.Z., Shao Z.M. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020; 19(1): 120. doi: 10.1186/s12943-020-01238-x.

52. Hu Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci Rep. 2020; 10(1): 2815. doi: 10.1038/s41598-020-59736-3.

53. Benedetti R., Dell’Aversana C., Giorgio C., Astorri R., Altucci L. Breast Cancer Vaccines: New Insights. Front Endocrinol (Lausanne). 2017; 8: 270. doi: 10.3389/fendo.2017.00270.

54. Clifton G.T., Gall V., Peoples G.E., Mittendorf E.A. Clinical Development of the E75 Vaccine in Breast Cancer. Breast Care (Basel). 2016; 11(2): 116–21. doi: 10.1159/000446097.

55. Burke E.E., Kodumudi K., Ramamoorthi G., Czerniecki B.J. Vaccine Therapies for Breast Cancer. Surg Oncol Clin N Am. 2019; 28(3): 353–67. doi: 10.1016/j.soc.2019.02.004.


Review

For citations:


Shevchenko Yu.A., Kuznetsova M.S., Khristin A.A., Sidorov S.V., Sennikov S.V. Modern breast cancer therapy: from tamoxifen to T-cell engineering. Siberian journal of oncology. 2022;21(5):109-122. (In Russ.) https://doi.org/10.21294/1814-4861-2022-21-5-109-122

Views: 882


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)