Preview

Siberian journal of oncology

Advanced search

Expression of LAG-3 on B-lymphocytes as a marker for prediction of response to therapy in patients with chronic lymphocytic leukemia

https://doi.org/10.21294/1814-4861-2023-22-2-34-42

Abstract

Purpose: to study the level of LAG-3 expression on B-lymphocytes and the feasibility of using it as a marker for predicting response to therapy in patients with chronic lymphocytic leukemia (CLL).

Material and Methods. The study included 40 patients with newly diagnosed CLL. All patients were divided into two groups: group I: patients with Binet stage A, who did not receive therapy and group II: patients with Binet stage C, who received immunochemotherapy in RB and FCR regimes. According to the treatment regimen and hematological response to therapy, 4 subgroups were distinguished: IIA-RB, IIA-FCR, IIB-RB, and IIB-FCR. The control group consisted of 20 people matched in age and gender without cancer. The immunophenotype, level of B-lymphocytes, LAG-3 expression, and the minimal residual disease in group II after the 6th course of immunochemotherapy were initially determined in all groups by flow cytometry. The data were evaluated using Statistica 13.0.

Results. Compared to the control group, the LAG-3 expression on B-lymphocytes was found in all groups of CLL patients before treatment. The expression level was higher in patients with Binet stage C than in patients with Binet stage. The data demonstrated differences in the level of LAG-3 expression in patients with different hematological responses to therapy. The initially higher level of LAG-3 expression on B-lymphocytes was observed in patients with Binet stage C CLL with an unfavorable response to therapy. A good hematological response was found can be achieved at the level of LAG-3 expression within 14.57 ± 0.66 % regardless of the therapy regimen, and unfavorable response to therapy at the level of 41.95 ± 1.62 %.

Conclusion. The initial level of LAG-3 expression on B-lymphocytes in patients with CLL can be used as a marker for predicting and monitoring response to treatment, regardless of the immunochemotherapy regimen used. 

About the Authors

O. N. Selyutina
National Medical Research Institute of Oncology of the Ministry of Health of the Russia
Russian Federation

Olesya N. Selyutina, Biologist, Clinical and Diagnostic Laboratory,

63, 14-th Liniya St., 344037, Rostov-on-Don



I. B. Lysenko
National Medical Research Institute of Oncology of the Ministry of Health of the Russia
Russian Federation

Irina B. Lysenko, MD, Professor, Head of the Department of Hematology/Oncology,

63, 14-th Liniya St., 344037, Rostov-on-Don



N. K. Guskova
National Medical Research Institute of Oncology of the Ministry of Health of the Russia
Russian Federation

Nailya K. Guskova, PhD, Head of Clinical and Diagnostic Laboratory,

63, 14-th Liniya St., 344037, Rostov-on-Don



I. A. Novikova
National Medical Research Institute of Oncology of the Ministry of Health of the Russia
Russian Federation

Inna A. Novikova, MD, PhD, Deputy General Director for Science, 

63, 14-th Liniya St., 344037, Rostov-on-Don



E. Yu. Zlatnik
National Medical Research Institute of Oncology of the Ministry of Health of the Russia
Russian Federation

Elena Yu. Zlatnik, MD, Professor, Chief Researcher of Laboratory of Immunophenotyping of Tumors,

63, 14-th Liniya St., 344037, Rostov-on-Don



T. F. Pushkareva
National Medical Research Institute of Oncology of the Ministry of Health of the Russia
Russian Federation

Tatyana F. Pushkareva, MD, Oncologist, Clinical Diagnostic Department, 

63, 14-th Liniya St., 344037, Rostov-on-Don



N. V. Nikolaeva
National Medical Research Institute of Oncology of the Ministry of Health of the Russia
Russian Federation

Nadezhda V. Nikolaeva, MD, DSc, Hematologist, Department of Oncology/Hematology, Leading Researcher, Department of Drug Treatment of Tumors, 

63, 14-th Liniya St., 344037, Rostov-on-Don



I. A. Kamaeva
National Medical Research Institute of Oncology of the Ministry of Health of the Russia
Russian Federation

Inna A. Kamaeva, MD, PhD, Junior Researcher, Department of Drug Treatment of Tumors, 

63, 14-th Liniya St., 344037, Rostov-on-Don



N. Yu. Samaneva
National Medical Research Institute of Oncology of the Ministry of Health of the Russia
Russian Federation

Natalya Yu. Samaneva, MD, PhD, Junior Researcher, Department of Drug Treatment of Tumors, Oncologist, Department of Oncology/Hematology, 

63, 14-th Liniya St., 344037, Rostov-on-Don



E. A. Kapuza
National Medical Research Institute of Oncology of the Ministry of Health of the Russia
Russian Federation

Elena A. Kapuza, MD, Oncologist, Department of Oncology/Hematology,

63, 14-th Liniya St., 344037, Rostov-on-Don



References

1. Kipps T.J., Stevenson F.K., Wu C.J., Croce C.M., Packham G., Wierda W.G., O’Brien S., Gribben J., Rai K. Chronic lymphocytic leukaemia. Nat Rev Dis Primers. 2017; 3: 1–22. doi: 10.1038/nrdp.2016.96.

2. Chiorazzi N., Rai K.R., Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005; 352(8): 804–15. doi: 10.1056/NEJMra041720.

3. Yosifov D.Y., Wolf C., Stilgenbauer S., Mertens D. From Biology to Therapy: The CLL Success Story. Hemasphere. 2019; 3(2). doi: 10.1097/HS9.0000000000000175.

4. Kravchenko D.V., Svirnovsky A.I. Chronic lymphocytic leukemia: clinic, diagnosis, treatment. Gomel, 2017. 117 p. (in Russian).

5. Craig F.E., Foon K.A. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008; 111(8): 3941–67. doi: 10.1182/blood-2007-11-120535.

6. Guskova N.K., Selyutina O.N., Novikova I.A., Maksimov A.Yu., Nozdricheva A.S., Abakumova S.V. Morphological and immunofenotypic features of the monoclonal population of B-lymphocytes in chronic lymphocytic leukemia. South Russian Journal of Cancer. 2020; 1(3): 27–35. (in Russian). doi: 10.37748/2687-0533-2020-1-3-3.

7. Rodríguez-Vicente A.E., Díaz M.G., Hernández-Rivas J.M. Chronic lymphocytic leukemia: a clinical and molecular heterogenous disease. Cancer Genet. 2013; 206(3): 49–62. doi: 10.1016/j.cancergen.2013.01.003.

8. Eichhorst B., Robak T., Montserrat E., Ghia P., Niemann C.U., Kater A.P., Gregor M., Cymbalista F., Buske C., Hillmen P., Hallek M., Mey U.; ESMO Guidelines Committee. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021; 32(1): 23–33. doi: 10.1016/j.annonc.2020.09.019.

9. Baliakas P., Mattsson M., Stamatopoulos K., Rosenquist R. Prognostic indices in chronic lymphocytic leukaemia: where do we stand how do we proceed? J Intern Med. 2016; 279(4): 347–57. doi: 10.1111/joim.12455.

10. Brown J.R., Hillmen P., O’Brien S., Barrientos J.C., Reddy N.M., Coutre S.E., Tam C.S., Mulligan S.P., Jaeger U., Barr P.M., Furman R.R., Kipps T.J., Cymbalista F., Thornton P., Caligaris-Cappio F., Delgado J., Montillo M., DeVos S., Moreno C., Pagel J.M., Munir T., Burger J.A., Chung D., Lin J., Gau L., Chang B., Cole G., Hsu E., James D.F., Byrd J.C. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia. 2018; 32(1): 83–91. doi: 10.1038/leu.2017.175.

11. Taghiloo S., Allahmoradi E., Ebadi R., Tehrani M., HosseiniKhah Z., Janbabaei G., Shekarriz R., Asgarian-Omran H. Upregulation of Galectin-9 and PD-L1 Immune Checkpoints Molecules in Patients with Chronic Lymphocytic Leukemia. Asian Pac J Cancer Prev. 2017; 18(8): 2269–74. doi: 10.22034/APJCP.2017.18.8.2269.

12. Mohammed Basabaeen A.A., Abdelgader E.A., Babekir E.A., Abdelrahim S.O., Eltayeb N.H., Altayeb O.A., Fadul E.A., Sabo A., Ibrahim I.K. TP53 Gene 72 Arg/Pro (rs1042522) Single Nucleotide Polymorphism Contribute to Increase the Risk of B-Chronic Lymphocytic Leukemia in the Sudanese Population. Asian Pac J Cancer Prev. 2019; 20(5): 1579–85. doi: 10.31557/APJCP.2019.20.5.1579.

13. Joshi N.S., Cui W., Chandele A., Lee H.K., Urso D.R., Hagman J., Gapin L., Kaech S.M. Inflammation directs memory precursor and short-lived efector CD8(+) T cell fates via the graded expression of Tbet transcription factor. Immunity. 2007; 27(2): 281–95. doi: 10.1016/j.immuni.2007.07.010.

14. Fischer K., Bahlo J., Fink A.M., Goede V., Herling C.D., Cramer P., Langerbeins P., von Tresckow J., Engelke A., Maurer C., Kovacs G., Herling M., Tausch E., Kreuzer K.A., Eichhorst B., Böttcher S., Seymour J.F., Ghia P., Marlton P., Kneba M., Wendtner C.M., Döhner H., Stilgenbauer S., Hallek M. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016; 127(2): 208–15. doi: 10.1182/blood-2015-06-651125.

15. Fischer K., Cramer P., Busch R., Böttcher S., Bahlo J., Schubert J., Pfüger K.H., Schott S., Goede V., Isfort S., von Tresckow J., Fink A.M., Bühler A., Winkler D., Kreuzer K.A., Staib P., Ritgen M., Kneba M., Döhner H., Eichhorst B.F., Hallek M., Stilgenbauer S., Wendtner C.M. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2012; 30(26): 3209–16. doi: 10.1200/JCO.2011.39.2688.

16. Eichhorst B., Fink A.M., Bahlo J., Busch R., Kovacs G., Maurer C., Lange E., Köppler H., Kiehl M., Sökler M., Schlag R., Vehling-Kaiser U., Köchling G., Plöger C., Gregor M., Plesner T., Trneny M., Fischer K., Döhner H., Kneba M., Wendtner C.M., Klapper W., Kreuzer K.A., Stilgenbauer S., Böttcher S., Hallek M.; international group of investigators; German CLL Study Group (GCLLSG). First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016; 17(7): 928–42. doi: 10.1016/S1470-2045(16)30051-1.

17. Al-Sawaf O., Hallek M., Fischer K. The role of minimal residual disease in chronic lymphocytic leukemia. Clin Adv Hematol Oncol. 2022; 20(2): 97–103.

18. Böttcher S., Ritgen M., Fischer K., Stilgenbauer S., Busch R.M., Fingerle-Rowson G., Fink A.M., Bühler A., Zenz T., Wenger M.K., Men-dila M., Wendtner C.M., Eichhorst B.F., Döhner H., Hallek M.J., Kneba M. Minimal residual disease quantifcation is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol. 2012; 30(9): 980–8. doi: 10.1200/JCO.2011.36.9348.

19. Goede V., Fischer K., Busch R., Engelke A., Eichhorst B., Wendtner C.M., Chagorova T., de la Serna J., Dilhuydy M.S., Illmer T., Opat S., Owen C.J., Samoylova O., Kreuzer K.A., Stilgenbauer S., Döhner H., Langerak A.W., Ritgen M., Kneba M., Asikanius E., Humphrey K., Wenger M., Hallek M. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014; 370(12): 1101–10. doi: 10.1056/NEJMoa1313984.

20. Kovacs G., Robrecht S., Fink A.M., Bahlo J., Cramer P., von Tresckow J., Maurer C., Langerbeins P., Fingerle-Rowson G., Ritgen M., Kneba M., Döhner H., Stilgenbauer S., Klapper W., Wendtner C.M., Fischer K., Hallek M., Eichhorst B., Böttcher S. Minimal Residual Disease Assessment Improves Prediction of Outcome in Patients With Chronic Lymphocytic Leukemia (CLL) Who Achieve Partial Response: Comprehensive Analysis of Two Phase III Studies of the German CLL Study Group. J Clin Oncol. 2016; 34(31): 3758–65. doi: 10.1200/JCO.2016.67.1305.

21. Dimier N., Delmar P., Ward C., Morariu-Zamfr R., Fingerle-Rowson G., Bahlo J., Fischer K., Eichhorst B., Goede V., van Dongen J.J.M., Ritgen M., Böttcher S., Langerak A.W., Kneba M., Hallek M. A model for predicting efect of treatment on progression-free survival using MRD as a surrogate end point in CLL. Blood. 2018; 131(9): 955–62. doi: 10.1182/blood-2017-06-792333.

22. Molica S., Giannarelli D., Montserrat E. Minimal Residual Disease and Survival Outcomes in Patients With Chronic Lymphocytic Leukemia: A Systematic Review and Meta-analysis. Clin Lymphoma Myeloma Leuk. 2019; 19(7): 423–30. doi: 10.1016/j.clml.2019.03.014.

23. Huard B., Tournier M., Hercend T., Triebel F., Faure F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol. 1994; 24(12): 3216–21. doi: 10.1002/eji.1830241246.

24. Shapiro M., Herishanu Y., Katz B.Z., Dezorella N., Sun C., Kay S., Polliack A., Avivi I., Wiestner A., Perry C. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica. 2017; 102(5): 874–82. doi: 10.3324/haematol.2016.148965.

25. Kotaskova J., Tichy B., Trbusek M., Francova H.S., Kabathova J., Malcikova J., Doubek M., Brychtova Y., Mayer J., Pospisilova S. High expression of lymphocyte-activation gene 3 (LAG3) in chronic lymphocytic leukemia cells is associated with unmutated immunoglobulin variable heavy chain region (IGHV) gene and reduced treatment-free survival. J Mol Diagn. 2010; 12(3): 328–34. doi: 10.2353/jmoldx.2010.090100.

26. Nikitin E.A., Bialik T.E., Zaritskii A.I., Iseber L., Kaplanov K.D., Lopatkina T.N., Lugovskaia S.A., Mukhortova O.V., Osmanov E.A., Poddubnaya I.V., Samoilova O.S., Stadnik E.A., Falaleeva N.A., Baikov V.V., Kovrigina A.M., Nevol’skikh A.A., Ivanov S.A., Khailova Z.V., Gevorkian T.G. Chronic lymphocytic leukemia/small lymphocytic lymphoma. Journal of Modern Oncology. 2020; 22 (3): 24–44. (in Russian). doi: 10.26442/18151434.2020.3.200385.

27. Rawstron A.C., Villamor N., Ritgen M., Böttcher S., Ghia P., Zehnder J.L., Lozanski G., Colomer D., Moreno C., Geuna M., Evans P.A., Natkunam Y., Coutre S.E., Avery E.D., Rassenti L.Z., Kipps T.J., CaligarisCappio F., Kneba M., Byrd J.C., Hallek M.J., Montserrat E., Hillmen P. International standardized approach for fow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia. 2007; 21(5): 956–64. doi: 10.1038/sj.leu.2404584.

28. Kit O.I., Timofeeva S.V., Sitkovskaya A.O., Novikova I.A., Kolesnikov E.N. The Biobank of the National Medical Research Centre for Oncology as a resource for research in the feld of personalized medicine: A review. Modern Oncology. 2022; 24(1): 6–11. (in Russian). doi: 10.26442/18151434.2022.1.201384.

29. Wierz M., Pierson S., Guyonnet L., Viry E., Lequeux A., Oudin A., Niclou S.P., Ollert M., Berchem G., Janji B., Guérin C., Paggetti J., Moussay E. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018; 131(14): 1617–21. doi: 10.1182/blood-2017-06-792267.

30. Sordo-Bahamonde C., Lorenzo-Herrero S., González-Rodríguez A.P., Payer Á.R., González-García E., López-Soto A., Gonzalez S. LAG-3 Blockade with Relatlimab (BMS-986016) Restores Anti-Leukemic Responses in Chronic Lymphocytic Leukemia. Cancers (Basel). 2021; 13(9): 2112. doi: 10.3390/cancers13092112.

31. Woo S.R., Turnis M.E., Goldberg M.V., Bankoti J., Selby M., Nirschl C.J., Bettini M.L., Gravano D.M., Vogel P., Liu C.L., Tangsombatvisit S., Grosso J.F., Netto G., Smeltzer M.P., Chaux A., Utz P.J., Workman C.J., Pardoll D.M., Korman A.J., Drake C.G., Vignali D.A. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012; 72(4): 917–27. doi: 10.1158/0008-5472.CAN-11-1620.

32. Grosso J.F., Kelleher C.C., Harris T.J., Maris C.H., Hipkiss E.L., De Marzo A., Anders R., Netto G., Getnet D., Bruno T.C., Goldberg M.V., Pardoll D.M., Drake C.G. LAG-3 regulates CD8+ T cell accumulation and efector function in murine self- and tumor-tolerance systems. J Clin Invest. 2007; 117(11): 3383–92. doi: 10.1172/JCI31184.

33. Qi Y., Chen L., Liu Q., Kong X., Fang Y., Wang J. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Efective Immunotherapy Strategy. Front Immunol. 2021; 11. doi: 10.3389/fmmu.2020.563258.

34. Liu D. Cancer biomarkers for targeted therapy. Biomark Res. 2019; 7: 25. doi: 10.1186/s40364-019-0178-7.

35. Grzywnowicz M., Karabon L., Karczmarczyk A., Zajac M., Skorka K., Zaleska J., Wlasiuk P., Chocholska S., Tomczak W., BojarskaJunak A., Dmoszynska A., Frydecka I., Giannopoulos K. The function of a novel immunophenotype candidate molecule PD-1 in chronic lymphocytic leukemia. Leuk Lymphoma. 2015; 56(10): 2908–13. doi: 10.3109/10428194.2015.1017820.

36. Li M., Sun X.H., Zhu X.J., Jin S.G., Zeng Z.J., Zhou Z.H., Yu Z., Gao Y.Q. HBcAg induces PD-1 upregulation on CD4+T cells through activation of JNK, ERK and PI3K/AKT pathways in chronic hepatitisB-infected patients. Lab Invest. 2012; 92(2): 295–304. doi: 10.1038/labinvest.2011.157.

37. McClanahan F., Riches J.C., Miller S., Day W.P., Kotsiou E., Neuberg D., Croce C.M., Capasso M., Gribben J.G. Mechanisms of PDL1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model. Blood. 2015; 126(2): 212–21. doi: 10.1182/blood-2015-02-626754.

38. Ramsay A.G., Clear A.J., Fatah R., Gribben J.G. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012; 120(7): 1412–21. doi: 10.1182/blood-2012-02-411678.

39. Tabakov D.V., Zabotina T.N., Chanturia N.V., Zakharova E.N., Vorotnikov I.K., Selchuk V.Yu., Sokolovskiy V.V., Petrovsky A.V. The relationship of GITR, Lag-3 and PD-1 expression with the main indicators of systemic and local immunity in patients with breast cancer. Modern Oncology. 2021; 23(3): 457–65. (in Russian). doi: 10.26442/18151434.2021.3.200809.

40. Wang Q., Zhang J., Tu H., Liang D., Chang D.W., Ye Y., Wu X. Soluble immune checkpoint-related proteins as predictors of tumor recurrence, survival, and T cell phenotypes in clear cell renal cell carcinoma patients. J Immunother Cancer. 2019; 7(1): 334. doi: 10.1186/s40425-019-0810-y.

41. He Y., Wang Y., Zhao S., Zhao C., Zhou C., Hirsch F.R. sLAG-3 in non-small-cell lung cancer patients’ serum. Onco Targets Ther. 2018; 11: 4781–4. doi: 10.2147/OTT.S164178.

42. Eichhorst B., Fink A.M., Busch R., Kovacs G., Maurer C., Lange E., Köppler H., Kiehl M.G., Soekler M., Schlag R., Vehling-Kaiser U., Köchling G.R.A., Plöger C., Gregor M., Plesner T., Trneny M., Fischer K., Döhner H., Kneba M., Wendtner C.M., Klapper W., Kreuzer K.A., Stilgenbauer S., Böttcher S., Hallek M. Frontline chemoimmunotherapy with fudarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) shows superior efcacy in comparison to bendamustine (B) and rituximab (BR) in previously untreated and physically ft patients (pts) with advanced chronic lymphocytic leukemia (CLL): Final analysis of an international, randomized study of the German CLL Study Group (GCLLSG) (CLL10 study). Blood. 2014; 124 (21): 19. doi: 10.1182/blood.V124.21.19.19.


Review

For citations:


Selyutina O.N., Lysenko I.B., Guskova N.K., Novikova I.A., Zlatnik E.Yu., Pushkareva T.F., Nikolaeva N.V., Kamaeva I.A., Samaneva N.Yu., Kapuza E.A. Expression of LAG-3 on B-lymphocytes as a marker for prediction of response to therapy in patients with chronic lymphocytic leukemia. Siberian journal of oncology. 2023;22(2):34-42. (In Russ.) https://doi.org/10.21294/1814-4861-2023-22-2-34-42

Views: 389


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)