The immune system contributes to the effectiveness of vaccine therapy in patients with metastatic melanoma
https://doi.org/10.21294/1814-4861-2023-22-2-43-55
Abstract
The aim of the study was to identify differences in the immune system parameters between metastatic melanoma patients who responded and did not respond to dendritic cell vaccination.
Material and Methods. The study group included 20 patients with stage III–IV metastatic melanoma, who received vaccine therapy with dendritic cells (DC) in a prophylactic mode. The control groups included 13 patients who had symptoms of disease progression at the time of starting vaccine therapy, and 5 healthy donors. The DC-vaccine was prepared in the form of a suspension of the patient’s autologous dendritic cells loaded with tumor antigens in vitro. A single dose had 2 million dendritic cells in 1 ml of phosphate buffer solution, which was administered intradermally in the nearest site to the regional lymphatic collectors. The immune system status was assessed before starting vaccination. The immune system status was evaluated according to the indices of 25 peripheral blood cell populations using multicolor flow cytometry and integral characteristic in the form of the visual image generated by the visualization method of multidimensional data (NovoSpark, Canada).
Results. The immune status in patients with metastatic melanoma at the start of DC-vaccination differed and was associated with the effectiveness of subsequent vaccine therapy. The response to vaccination was observed in patients whose immune system status was similar to that of healthy individuals. Low efficacy of DC-vaccine therapy was shown in patients whose immune system status corresponded to that of patients with disease progression. Alterations of the immune system in patients with metastatic melanoma were registered both at the level of individual immunological parameters and at the level of visualized integral characteristics. The integral characteristics of the immune system associated with the patient’s immunocompromised status can be considered as a criterion for stratification of patients with metastatic melanoma for the effective DC-vaccine therapy.
Conclusion. The effectiveness of vaccine therapy with dendritic cells in patients with metastatic melanoma is associated with the immune system state before starting this therapy.
About the Authors
I. N. MikhaylovaRussian Federation
Irina N. Mikhaylova, MD, DSc, Leading Researcher, Department of Surgical Methods of Treatment No. 12,
24, Kashirskoye Shosse, 115522, Moscow
M. N. Stakheyeva
Russian Federation
Marina N. Stakheyeva, MD, DSc, Leading Researcher of the Laboratory of Molecular Oncology and Immunology,
5, Kooperativny St., 634009, Tomsk
I. Zh. Shubina
Russian Federation
Irina Zh. Shubina, DSc, Leading Researcher of the Laboratory of Cellular Immunity, Research Institute EDITO,
24, Kashirskoye Shosse, 115522, Moscow
G. Z. Chkadua
Russian Federation
Georgi Z. Chkadua, MD, PhD, Senior Researcher, Laboratory of Experimental Diagnostics and Biotherapy of Tumors,
24, Kashirskoye Shosse, 115522, Moscow
A. A. Borunova
Russian Federation
Anna A. Borunova, MD, PhD, Senior Researcher, Laboratory of Clinical Immunology, Department of Clinical Diagnostics, Research Institute of Clinical Oncology,
24, Kashirskoye Shosse, 115522, Moscow
R. A. Zukov
Russian Federation
Ruslan A. Zukov, MD, Professor, Head of the Department of Oncology and Radiation Therapy with a Postgraduate Course,
1, P. Zeleznyak St., 660022, Krasnoyarsk
I. V. Bogdashin
Russian Federation
Igor V. Bogdashin, MD, PhD, Immunologist,
47-b, Kirova St., 644041, Omsk
E. L. Choynzonov
Russian Federation
Evgeny L. Choynzonov, MD, Professor, Full Member of the Russian Academy of Sciences, Head of the Department of Head and Neck Tumors, Director, 5, Kooperativny St., 634009, Tomsk;
Head of Oncology Department, 2, Moskovsky tract, 634050, Tomsk
N. V. Cherdyntseva
Russian Federation
Nadezhda V. Cherdyntseva, DSc, Professor, Corresponding Member of the Russian Academy of Sciences, Deputy Director for Science, Head of the Department of Molecular Oncology and Immunology, 5, Kooperativny St., 634009, Tomsk;
Researcher, Laboratory of Genetic Technologies, 2, Moskovsky tract, 634050, Tomsk;
Leading Researcher of the Laboratory for Translational Cell and Molecular Biomedicine, 36, Lenina St., 634050, Tomsk
References
1. Maurer D.M., Butterfeld L.H., Vujanovic L. Melanoma vaccines: clinical status and immune endpoints. Melanoma Res. 2019; 29(2): 109–18. doi: 10.1097/CMR.0000000000000535.
2. Erhart F., Buchroithner J., Reitermaier R., Fischhuber K., Klingenbrunner S., Sloma I., Hibsh D., Kozol R., Efroni S., Ricken G., Wöhrer A., Haberler C., Hainfellner J., Krumpl G., Felzmann T., Dohnal A.M., Marosi C., Visus C. Immunological analysis of phase II glioblastoma dendritic cell vaccine (Audencel) trial: immune system characteristics influence outcome and Audencel up-regulates Th1-related immunovariables. Acta Neuropathol Commun. 2018; 6(1): 135. doi: 10.1186/s40478-018-0621-2.
3. Lluesma S.M., Graciotti M., Chiang C.L., Kandalaft L.E. Does the Immunocompetent Status of Cancer Patients Have an Impact on Thera peutic DC Vaccination Strategies? Vaccines. 2018; 6(4): 79. doi:10.3390/vaccines6040079.
4. Dronca R.S., Leontovich A.A., Nevala W.K., Markovic S.N. Personalized therapy for metastatic melanoma: could timing be everything? Future Oncol. 2012; 8(11): 1401–6. doi: 10.2217/fon.12.126.
5. Holtan S.G., Dronca R.S., Nevala W.K., Porrata L.F., Mansfeld A.S., Block M.S., Leontovich A.A., Grotz T.E., Turner J.D., Frisch H.P., Markovic S.N. The dynamic human immune response to cancer: it might just be rocket science. Immunotherapy. 2011; 3(9): 1021–4. doi: 10.2217/imt.11.109.
6. Leontovich A.A., Dronca R.S., Suman V.J., Ashdown M.L., Nevala W.K., Thompson M.A., Robinson A., Kottschade L.A., Kaur J.S., McWilliams R.R., Ivanov L.V., Croghan G.A., Markovic S.N. Fluctuation of systemic immunity in melanoma and implications for timing of therapy. Front Biosci (Elite Ed). 2012; 4(3): 958–75. doi: 10.2741/E433.
7. Stakheyeva M., Riabov V., Mitrofanova I., Litviakov N., Choynzonov E., Cherdyntseva N., Kzhyshkowska J. Role of the Immune Component of Tumor Microenvironment in the Efciency of Cancer Treatment: Perspectives for the Personalized Therapy. Curr Pharm Des. 2017; 23(32): 4807–26. doi: 10.2174/1381612823666170714161703.
8. Eldenzon D., Shamroni D., Volovodenko V. Method and system for multidimensional data visualization. Saarbrucken: LAP LAMBERT Academic Publishing. 2013. 45 p.
9. Chkadua G.Z., Zabotina T.N., Burkova A.A., Tamayeva Z.E., Ogorodnikova Ye.V., Zhordania K.I., Kadagidze Z.G., Baryshnikov A.Yu. Adaptation of a technique for culturing human dendritic cells from peripheral blood monocytes for clinical use. Russian Biotherapeutic Journal. 2002; 1(3): 56–9. (in Russian).
10. Kistenev Yu.V., Nikiforova O.Yu., Stromov G.G., Fokin V.A. Optimization of integral estimates of the state of biosystems using parallel computing. Computer research and modeling. 2011; 3(1): 93−9. (in Russian).
11. Kim Dzh.O., M’yuller CH.U., Klekka U.R., Yenyukov I.S. Factor, Discriminant, and Cluster Analysis Finansy i Statistika. Moscow, 1989. (in Russian).
12. Stakheyeva M.N., Serykh A.P., Karas S.I., Perina E.A. The complex of informative immunological parameters for breast cancer outcome prognosis. Bulletin of Siberian Medicine. 2015; 14(3): 30–4. (in Russian). doi: 10.20538/1682-0363-2015-3-30-34.
13. Stakheyeva M., Eidenzon D., Cherdyntseva N., Slonimskaya E., Cherdyntsev E. Multidimensional visualization for the immune system state presentation in breast cancer patients. 5th International Scientifc Conference on New Operational Technologies (NEWOT). 2015; Tomsk, 2015. doi: 10.1063/1.4936066.
14. Stakheeva M.N., Eideson D., Slonimskaya E.M., Cherdyntseva N.V., Kukharev Ya.V., Garbukov E.Yu. Method for predicting hematogenous metastasis in patients with breast cancer during antitumor treatment based on estimation of immune system state. The patent of the Russian Federation No 2436099. 10.12. 2011. (in Russian).
15. Umansky V., Sevko A. Melanoma-induced immunosuppression and its neutralization. Semin Cancer Biol. 2012; 22(4): 319–26. doi: 10.1016/j.semcancer.2012.02.003.
16. Akiyama Y., Kiyohara Y., Yoshikawa S., Otsuka M., Kondou R., Nonomura C., Miyata H., Iizuka A., Ashizawa T., Ohshima K., Urakami K., Nagashima T., Kusuhara M., Sugino T., Yamaguchi K. Immune responseassociated gene profling in Japanese melanoma patients using multi-omics analysis. Oncol Rep. 2018; 39(3): 1125–31. doi: 10.3892/or.2017.6173.
17. Greenplate A.R., McClanahan D.D., Oberholtzer B.K., Doxie D.B., Roe C.E., Diggins K.E., Leelatian N., Rasmussen M.L., Kelley M.C., Gama V., Siska P.J., Rathmell J.C., Ferrell P.B., Johnson D.B., Irish J.M. Computational Immune Monitoring Reveals Abnormal Double-Negative T Cells Present across Human Tumor Types. Cancer Immunol Res. 2019; 7(1): 86–99. doi: 10.1158/2326-6066.CIR-17-0692.
18. Mahmoud F., Shields B., Makhoul I., Avaritt N., Wong H.K., Hutchins L.F., Shalin S., Tackett A.J. Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack. Cancer Biol Ther. 2017; 18(7): 451–69. doi: 10.1080/15384047.2017.1323596.
19. Nachmany I., Bogoch Y., Friedlander-Malik G., Amar O., Bondar E., Zohar N., Hantisteanu S., Fainaru O., Lubezky N., Klausner J.M., Pencovich N. The transcriptional profle of circulating myeloid derived suppressor cells correlates with tumor development and progression in mouse. Genes Immun. 2019; 20(7): 589–98. doi: 10.1038/s41435-019-0062-3.
20. García-Salum T., Villablanca A., Matthäus F., Tittarelli A., Baeza M., Pereda C., Gleisner M.A., González F.E., López M.N., Hoheisel J.D., Norgauer J., Gebicke-Haerter P.J., Salazar-Onfray F. Molecular signatures associated with tumor-specifc immune response in melanoma patients treated with dendritic cell-based immunotherapy. Oncotarget. 2018; 9(24): 17014–27. doi: 10.18632/oncotarget.24795.
21. Whiteside T.L., Mandapathil M., Szczepanski M., Szajnik M. Mechanisms of tumor escape from the immune system: adenosine-producing Treg, exosomes and tumor-associated TLRs. Bull Cancer. 2011; 98(2): 25–31. doi: 10.1684/bdc.2010.1294.
22. Ostrand-Rosenberg S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev. 2008; 18(1): 11–8. doi: 10.1016/j.gde.2007.12.007.
23. Kusmartsev S., Gabrilovich D.I. Efect of tumor-derived cytokines and growth factors on diferentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev. 2006; 25(3): 323–31. doi: 10.1007/s10555-006-9002-6.
24. Burke S., Lakshmikanth T., Colucci F., Carbone E. New views on natural killer cell-based immunotherapy for melanoma treatment. Trends Immunol. 2010; 31(9): 339–45. doi: 10.1016/j.it.2010.06.003.
25. Grotz T.E., Jakub J.W., Mansfeld A.S., Goldenstein R., Enninga E.A., Nevala W.K., Leontovich A.A., Markovic S.N. Evidence of Th2 polarization of the sentinel lymph node (SLN) in melanoma. Oncoimmunology. 2015; 4(8). doi: 10.1080/2162402X.2015.1026504.
26. Liu Q., Zhu H., Liu Y., Musetti S., Huang L. BRAF peptide vaccine facilitates therapy of murine BRAF-mutant melanoma. Cancer Immunol Immunother. 2018; 67(2): 299–310. doi: 10.1007/s00262-017-2079-7.
27. Calderon-Gonzalez R., Bronchalo-Vicente L., Freire J., Frande-Cabanes E., Alaez-Alvarez L., Gomez-Roman J., Yañez-Diaz S., Alvarez-Dominguez C. Exceptional antineoplastic activity of a dendriticcell-targeted vaccine loaded with a Listeria peptide proposed against metastatic melanoma. Oncotarget. 2016; 7(13): 16855–65. doi: 10.18632/oncotarget.7806.
28. Stakheyeva M., Eidenzon D., Slonimskaya E., Patysheva M., Bogdashin I., Kolegova E., Grigoriev E., Choinzonov E., Cherdyntseva N. Integral characteristic of the immune system state predicts breast cancer outcome. Exp Oncol. 2019; 41(1): 32–8.
Review
For citations:
Mikhaylova I.N., Stakheyeva M.N., Shubina I.Zh., Chkadua G.Z., Borunova A.A., Zukov R.A., Bogdashin I.V., Choynzonov E.L., Cherdyntseva N.V. The immune system contributes to the effectiveness of vaccine therapy in patients with metastatic melanoma. Siberian journal of oncology. 2023;22(2):43-55. https://doi.org/10.21294/1814-4861-2023-22-2-43-55