Preview

Siberian journal of oncology

Advanced search

Knockout of the histone methyltransferase NSD1 leads to a decrease in cell proliferation and an increase in sensitivity to cisplatin in laryngeal squamous cell carcinoma

https://doi.org/10.21294/1814-4861-2023-22-2-76-84

Abstract

Introduction. The histone methylation regulates gene expression and plays a role in genomic stability participating in DNA repair. Dimethylation of histone 3 lysine 36 (H3K36me2) is an important histone modification which is responsible for gene expression activation. H3K36me2 is a product of methyltransferase activity of NSD1, NSD2, NSD3, and ASH1L proteins. NSD1 mutations are known to often occur in head and neck squamous carcinoma. The presence of NSD1 mutations highly correlates with increased survival, especially for patients with laryngeal cancer. The aim of this study was an in vitro investigation of the role of NSD1 in the cell proliferation of laryngeal squamous cell cancer and non-small lung cancer cells, as well as a study of the effect of disruption of the NSD1 gene expression on cisplatin treatment response.

Material and Methods. Using TCGA, correlation analysis was performed to compare NSD1 wild type and mutant patient survival. NSD1 knockout cell lines models of laryngeal and non-small cell lung cancer were developed using the CRISPR/ Cas9 system. The effect of NSD1 knockout on H3K36me2 level was evaluated by western blot. Proliferation and IC50 of cisplatin in control and knockout cells were studied as well.

Results. It was demonstrated that NSD1 knockout decreased the H3K36me2 level and cell proliferation in laryngeal squamous cell cancer cells and increased the sensitivity of head and neck cancer cells to cisplatin treatment, while there was no effect of NSD1 knockout in a non-small cell lung cancer cell line.

Conclusion. Based on the data obtained, it can be concluded that the NSD1 protein is a potential target for inhibitor development following in vitro and in vivo testing in head-neck squamous cell carcinoma models. More studies are needed for better understanding of the regulation of tumor cell growth by NSD1

About the Authors

I. A. Topchu
Kazan (Volga region) Federal University
Russian Federation

Iuliia A. Topchu, MS,

18, Kremlyovskaya St., 420008, Kazan



M. V. Tikhomirova
Kazan (Volga region) Federal University
Russian Federation

Mariya V. Tikhomirova, MS,

18, Kremlyovskaya St., 420008, Kazan



E. R. Bulatov
Kazan (Volga region) Federal University
Russian Federation

Emil R. Bulatov, PhD, Leading Researcher, 

18, Kremlyovskaya St., 420008, Kazan



Z. I. Abramova
Kazan (Volga region) Federal University
Russian Federation

Zinaida I. Abramova, Professor, Leading Researcher,

18, Kremlyovskaya St., 420008, Kazan



Y. A. Boumber
Kazan (Volga region) Federal University
Russian Federation

Yanis A. Boumber, PhD, Senior Researcher,

18, Kremlyovskaya St., 420008, Kazan



References

1. Kanwal R., Gupta K., Gupta S. Cancer epigenetics: an introduction. Methods Mol Biol. 2015; 1238: 3–25. doi: 10.1007/978-1-4939-1804-1_1.

2. Strahl B.D., Allis C.D. The language of covalent histone modifcations. Nature. 2000; 403(6765): 41–5. doi: 10.1038/47412.

3. Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifcations. Cell Res. 2011; 21(3): 381–95. doi: 10.1038/cr.2011.22.

4. Li J., Ahn J.H., Wang G.G. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol Life Sci. 2019; 76(15): 2899–2916. doi: 10.1007/s00018-019-03144-y.

5. de Krijger I., van der Torre J., Peuscher M.H., Eder M., Jacobs J.J.L. H3K36 dimethylation by MMSET promotes classical non-homologous end-joining at unprotected telomeres. Oncogene. 2020; 39(25): 4814–27. doi: 10.1038/s41388-020-1334-0.

6. Fnu S., Williamson E.A., De Haro L.P., Brenneman M., Wray J., Shaheen M., Radhakrishnan K., Lee S.H., Nickoloff J.A., Hromas R. Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining. Proc Natl Acad Sci U S A. 2011; 108(2): 540–5. doi: 10.1073/pnas.1013571108.

7. Kanwal R., Gupta S. Epigenetic modifcations in cancer. Clin Genet. 2012; 81(4): 303–11. doi: 10.1111/j.1399-0004.2011.01809.x.

8. Greer E.L., Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012; 13(5): 343–57. doi: 10.1038/nrg3173.

9. Topchu I., Pangeni R.P., Bychkov I., Miller S.A., Izumchenko E., Yu J., Golemis E., Karanicolas J., Boumber Y. The role of NSD1, NSD2, and NSD3 histone methyltransferases in solid tumors. Cell Mol Life Sci. 2022; 79(6): 285. doi: 10.1007/s00018-022-04321-2.

10. Bui N., Huang J.K., Bojorquez-Gomez A., Licon K., Sanchez K.S., Tang S.N., Beckett A.N., Wang T., Zhang W., Shen J.P., Kreisberg J.F., Ideker T. Disruption of NSD1 in Head and Neck Cancer Promotes Favorable Chemotherapeutic Responses Linked to Hypomethylation. Mol Cancer Ther. 2018; 17(7): 1585–94. doi: 10.1158/1535-7163.MCT-17-0937.

11. Pan C., Izreig S., Yarbrough W.G., Issaeva N. NSD1 mutations by HPV status in head and neck cancer: diferences in survival and response to DNA-damaging agents. Cancers Head Neck. 2019; 4: 3. doi: 10.1186/s41199-019-0042-3.

12. Nosé V., Lazar A.J. Update from the 5th Edition of the World Health Organization Classifcation of Head and Neck Tumors: Familial Tumor Syndromes. Head Neck Pathol. 2022; 16(1): 143–57. doi: 10.1007/s12105-022-01414-z.

13. Peri S., Izumchenko E., Schubert A.D., Slifker M.J., Ruth K., Serebriiskii I.G., Guo T., Burtness B.A., Mehra R., Ross E.A., Sidransky D., Golemis E.A. NSD1- and NSD2-damaging mutations defne a subset of laryngeal tumors with favorable prognosis. Nat Commun. 2017; 8(1): 1772. doi: 10.1038/s41467-017-01877-7.

14. Brennan K., Shin J.H., Tay J.K., Prunello M., Gentles A.J., Sunwoo J.B., Gevaert O. NSD1 inactivation defnes an immune cold, DNA hypomethylated subtype in squamous cell carcinoma. Sci Rep. 2017; 7(1): 17064. doi: 10.1038/s41598-017-17298-x.

15. Mazitova A.M., Topchu Iu.A., Mingazova L.A., Biktagirova E.M., Abramova Z.I., Gabbasov R.T. Role of autophagy in response of epithelial ovarian cancer cells to cisplatin treatment and cisplatin resistance. Genes & Cells. 2020; 15(3): 44–7. (in Russian). doi: 10.23868/202011006.

16. Gameiro S.F., Ghasemi F., Zeng P.Y.F., Mundi N., Howlett C.J., Plantinga P., Barrett J.W., Nichols A.C., Mymryk J.S. Low expression of NSD1, NSD2, and NSD3 defne a subset of human papillomavirus-positive oral squamous carcinomas with unfavorable prognosis. Infect Agent Cancer. 2021; 16(1): 13. doi: 10.1186/s13027-021-00347-6.

17. Sánchez-Rivera F.J., Jacks T. Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer. 2015; 15(7): 387–95. doi: 10.1038/nrc3950.

18. Husmann D., Gozani O. Histone lysine methyltransferases in biology and disease. Nat Struct Mol Biol. 2019; 26(10): 880–9. doi: 10.1038/s41594-019-0298-7.

19. Saloura V., Cho H.S., Kiyotani K., Alachkar H., Zuo Z., Nakakido M., Tsunoda T., Seiwert T., Lingen M., Licht J., Nakamura Y., Hamamoto R. WHSC1 promotes oncogenesis through regulation of NIMA-related kinase-7 in squamous cell carcinoma of the head and neck. Mol Cancer Res. 2015; 13(2): 293–304. doi: 10.1158/1541-7786.MCR-14-0292-T.

20. Saloura V., Vougiouklakis T., Zewde M., Kiyotani K., Park J.H., Gao G., Karrison T., Lingen M., Nakamura Y., Hamamoto R. WHSC1L1 drives cell cycle progression through transcriptional regulation of CDC6 and CDK2 in squamous cell carcinoma of the head and neck. Oncotarget. 2016; 7(27): 42527–38. doi: 10.18632/oncotarget.9897.


Review

For citations:


Topchu I.A., Tikhomirova M.V., Bulatov E.R., Abramova Z.I., Boumber Y.A. Knockout of the histone methyltransferase NSD1 leads to a decrease in cell proliferation and an increase in sensitivity to cisplatin in laryngeal squamous cell carcinoma. Siberian journal of oncology. 2023;22(2):76-84. (In Russ.) https://doi.org/10.21294/1814-4861-2023-22-2-76-84

Views: 737


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)