Role of computed tomography in sarcopenia detection
https://doi.org/10.21294/1814-4861-2023-22-3-125-133
Abstract
The study aimed to summarize the available data on the role of computed tomography in sarcopenia detection in cancer patients. Material and Methods. A literature search was conducted in the Medline, Scopus, Pubmed, and Elibrary systems. More than 100 articles published in 2008-2022 were analyzed. We included 45 articles in this review. Results. According to the European Consensus, sarcopenia is a syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength due to age-related, neurohumoral changes, malnutrition or muscle catabolism. It is difficult to overestimate the importance of sarcopenia, since this syndrome is one of the five main risk factors for morbidity and mortality in people over 65 years of age. Sarcopenia is mainly observed in inflammatory diseases, malignancy or organ failure. According to most researchers, CT is considered the gold standard method to assess muscle mass and quality. It is a reliable method for quantitative analysis, which was shown in a study based on the comparison of quantitative assessment of various muscle groups based on CT with muscle volume measured on cadaveric tissues. The purpose of this literature review was to highlight the importance of computed tomography for the detection of sarcopenia in clinical practice. Based on the results of the literature analysis, sarcopenia is still a challenge for modern oncology. Sarcopenia negatively affects the prognosis of the disease and quality of life of cancer patients. Sarcopenia may develop due to metabolic changes caused by cancer treatment, as a result of which the degradation of muscle protein begins to prevail over its synthesis. Conclusion. Given the high prevalence and prognostic significance of sarcopenia in oncology, the need for its early diagnosis and active treatment becomes obvious. The use of routine CT examinations for the diagnosis of sarcopenia will allow us to search for possible causes and optimize treatment, determine the likelihood of risks and determine the treatment strategy at an early stage, when therapy can be most effective.
About the Authors
E. V. SheberovaRussian Federation
Elizaveta V. Sheberova - MD, Radiologist, A. Tsyb Medical Radiological Research Centre - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia.
10, Marshal Zhukov St., 249031, Obninsk
N. K. Silanteva
Russian Federation
Natalya K. Silanteva - MD, DSc, Leading Researcher, A. Tsyb Medical Radiological Research Centre - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia.
10, Marshal Zhukov St., 249031, Obninsk
T. A. Agababian
Russian Federation
Tatev A. Agababian - MD, PhD, Head of the Department, A. Tsyb Medical Radiological Research Centre - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia.
10, Marshal Zhukov St., 249031, Obninsk
A. L. Potapov
Russian Federation
Aleksandr L. Potapov - MD, Professor, Head of the Department, A. Tsyb Medical Radiological Research Centre - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia.
10, Marshal Zhukov St., 249031, Obninsk
A. A. Nevolskikh
Russian Federation
Aleksey A. Nevolskikh - MD, DSc Deputy Director, A. Tsyb Medical Radiological Research Centre - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia.
10, Marshal Zhukov St., 249031, Obninsk
S. A. Ivanov
Russian Federation
Sergey A. Ivanov - MD, DSc, Corresponding Member of the Russian Academy of Sciences, Director, A. Tsyb Medical Radiological Research Centre - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia; Professor of Chair of Oncology and Radiology named after Kharchenko, RUDN University.
10, Marshal Zhukov St., 249031, Obninsk; 6, Miklukho-Maklaya St., Moscow, 117198
Author ID (Scopus): 16070399200
A. D. Kaprin
Russian Federation
Andrej D. Kaprin - MD, DSc, Professor, Academician of the Russian Academy of Sciences, Head of Chair of Oncology and Radiology named after Kharchenko, RUDN University; Director, P.A. Hertsen Moscow Oncology Research Institute - branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia; Director General, National Medical Research Radiological Centre of the Ministry of Health of the Russia.
6, Miklukho-Maklaya St., Moscow, 117198; 3, 2nd Botkinsky proezd, 125284, Moscow; 4, Koroleva St., 249036, Obninsk
References
1. Masenko V.L., Kokov A.N., Grigoreva I.I., Krivoshapova K.E. Radiology methods of the sarcopenia diagnosis. Research and Practical Medicine Journal. 2019; 6(4): 127-37. (in Russian). doi: 10.17709/2409-2231-2019-6-4-13.
2. Ufuk F, HerekD., YukselD. Diagnosis of Sarcopenia in Head and Neck Computed Tomography: Cervical Muscle Massasa Strong Indicator of Sarcopenia. Clin Exp Otorhinolaryngol. 2019; 12(3): 317-24. doi: 10.21053/ceo.2018.01613.
3. Grigorieva I.I., Raskina T.A., Letaeva M.V., Malyshenko O.S., Averkieva Yu.V., Masenko V.L., Kokov A.N. Sarcopenia: pathogenesis and diagnosis. Fundamental and Clinical Medicine. 2019; 4(4): 105-16. (in Russian). doi: 10.23946/2500-0764-2019-4-4-105-116.
4. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyere O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., Schneider S.M., Sieber C.C., Topinkova E., Vandewoude M., Visser M., Zamboni M.; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48(1): 16-31. doi: 10.1093/ageing/afy169. Erratum in: Age Ageing. 2019; 48(4): 601.
5. Kukosh M.Yu., Ter-Ovanesov M.D. Sarcopenia in oncology practice. Medical Alphabet. 2018; 1(15): 37-43. (in Russian).
6. Beaudart C., McCloskey E., Bruyere O., CesariM., Rolland Y., Rizzoli R., Araujo de Carvalho I., Amuthavalli Thiyagarajan J., Bautmans I., Bertiere M.C., Brandi M.L., Al-Daghri N.M., Burlet N., Cavalier E., Cerreta F., Cherubini A., Fielding R., Gielen E., Landi F., Petermans J., Reginster J.Y., Visser M., Kanis J., Cooper C. Sarcopenia in daily practice: assessment and management. BMC Geriatr. 2016; 16(1): 170. doi: 10.1186/s12877-016-0349-4.
7. Mitsiopoulos N., Baumgartner R.N., Heymsfield S.B., Lyons W., Gallagher D., Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol (1985). 1998; 85(1): 115-22. doi: 10.1152/jappl.1998.85.1.115.
8. Leyderman I.N., Gritsan A.I., Zabolotskikh I.B., Mazurok V.A., Polyakov I.V., Potapov A.L., Sytov A.V., Yaroshetskiy A.I. Perioperative Nutritional Support. Clinical Practice Recommendations of The National “Federation of Anesthesiologists And Reanimatologists”. 2021; 4: 7-20. (in Russian). doi: 10.21320/1818-474X-2021-4-7-20.
9. Shen W., Punyanitya M., Wang Z., Gallagher D., St-Onge M.P., Albu J., Heymsfield S.B., Heshka S. Visceral adipose tissue: relations between single-slice areas and total volume. Am J Clin Nutr. 2004; 80(2): 271-8. doi: 10.1093/ajcn/80.2.271.
10. Shen W., Punyanitya M., Wang Z., Gallagher D., St-Onge M.P., Albu J., Heymsfield S.B., Heshka S. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol (1985). 2004; 97(6): 2333-8. doi: 10.1152/japplphysiol.00744.2004.
11. Mourtzakis M., Prado C.M., Lieffers J.R., Reiman T., McCargar L.J., Baracos V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008; 33(5): 997-1006. doi: 10.1139/H08-075.
12. Eisenhauer E.A., Therasse P., Bogaerts J., Schwartz L.H., Sargent D., Ford R., Dancey J., Arbuck S., Gwyther S., Mooney M., Rubinstein L., Shankar L., Dodd L., Kaplan R., Lacombe D., Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009; 45(2): 228-47. doi: 10.1016/j.ejca.2008.10.026.
13. Lyadov V.K., Bulanova E.A., Sinitsyn V.E. Possibilities of ct in sarcopenia detection in patients with chronic diseases and cancer of pancreas. Journal of Diagnostic and Interventional Radiology. 2012; 6(1): 13-8. (in Russian). doi: 10.25512/DIR.2012.06.1.03.
14. Kawaguchi Y., Hanaoka J., Ohshio Y., Okamoto K., Kaku R., Hayashi K., Shiratori T., Yoden M. Sarcopenia predicts poor postoperative outcome in elderly patients with lung cancer. Gen Thorac Cardiovasc Surg. 2019; 67(11): 949-54. doi: 10.1007/s11748-019-01125-3.
15. Lee J.S., Kim Y.S., Kim E.Y., Jin W. Prognostic significance of CT-determined sarcopenia in patients with advanced gastric cancer. PLoS One. 2018; 13(8). doi: 10.1371/journal.pone.0202700.
16. Jones K., Gordon-Weeks A., Coleman C., Silva M. Radiologically Determined Sarcopenia Predicts Morbidity and Mortality Following Abdominal Surgery: A Systematic Review and Meta-Analysis. World J Surg. 2017; 41(9): 2266-79. doi: 10.1007/s00268-017-3999-2.
17. Hung S.K., Kou H.W., Hsu K.H., Wu C.T., Lee C.W., Leonard Goh Z.N., Seak C.K., Chen-Yeen Seak J., Liu Y.T., Seak C.J.; SPOT investigators. Sarcopenia is a useful risk stratification tool to prognosticate splenic abscess patients in the emergency department. J Formos Med Assoc. 2021; 120(3): 997-1004. doi: 10.1016/j.jfma.2020.08.039.
18. Yokota F., Otake Y., Taka M., Ogawa T., Okada T., Sugano N., Sato Y. Automated muscle segmentation from CT images of the hip and thigh using a hierarchical multi-atlas method. Int J Comp Assis Radiol Surg. 2021; 120(3): 997-1004. doi: 10.1007/s11548-018-1758-y.
19. Erlandson M.C., Lorbergs A.L., Mathur S., Cheung A.M. Muscle analysis using pQCT, DXA and MRI. Eur J Radiol. 2016; 85(8): 1505-11. doi: 10.1016/j.ejrad.2016.03.001.
20. Derstine B.A., Holcombe S.A., Ross B.E., Wang N.C., Su G.L., Wang S.C. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep. 2018; 8(1): 11369. doi: 10.1038/s41598-018-29825-5.
21. Peterson S.J., Braunschweig C.A. Prevalence of Sarcopenia and Associated Outcomes in the Clinical Setting. Nutr Clin Pract. 2016; 31(1): 40-8. doi: 10.1177/0884533615622537.
22. Weijs P.J., Looijaard W.G., Dekker I.M., Stapel S.N., Girbes A.R., Oudemans-van Straaten H.M., Beishuizen A. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care. 2014; 18(2): 12. doi: 10.1186/cc13189.
23. Buenizel J., Heinz J., Bleckmann A., Bauer C., Rover C., Bohnen-berger H., Saha S., Hinterthaner M., Baraki H., Kutschka I., Emmert A. Sarcopenia as Prognostic Factor in Lung Cancer Patients: A Systematic Review and Meta-analysis. Anticancer Res. 2019; 39(9): 4603-12. doi: 10.21873/anticanres.13640.
24. Toledo D.O., Carvalho A.M., Oliveira A.M.R.R., Toloi J.M., Silva A.C., Francisco de Mattos Farah J., Prado C.M., Silva J.M. Jr. The use of computed tomography images as a prognostic marker in critically ill cancer patients. Clin Nutr ESPEN. 2018; 25: 114-20. doi: 10.1016/j.clnesp.2018.03.122.
25. Weerink L.B.M., van der Hoorn A., van Leeuwen B.L., de Bock G.H. Low skeletal muscle mass and postoperative morbidity in surgical oncology: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2020; 11(3): 636-49. doi: 10.1002/jcsm.12529.
26. Arends J., Bachmann P., Baracos V., Barthelemy N., Bertz H., Bozzeiii F, Fearon K., Hunerer E., Isenring E., Kaasa S., Krznaric Z., LairdB., LarssonM., LavianoA., Muhlebach S., MuscarnoliM., OldervollL., Ravasco P., Solheim T., Strasser F., de van der Schueren M., Preiser J.C. ESPEN guidelines on nutrition in cancer patients. Clin Nutr. 2017; 36(1): 11-48. doi: 10.1016/j.clnu.2016.07.015.
27. Martin L., Senesse P., Gioulbasanis I., Antoun S., Bozzetti F., Deans C., Strasser F., Thoresen L., Jagoe R.T., Chasen M., Lundholm K., Bosaeus I., Fearon K.H., Baracos V.E. Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol. 2015; 33(1): 90-9. doi: 10.1200/JCO.2014.56.1894. Erratum in: J Clin Oncol. 2015; 33(7): 814.
28. Prado C.M., Cushen S.J., Orsso C.E., Ryan A.M. Sarcopenia and cachexia in the era of obesity: clinical and nutritional impact. Proc Nutr Soc. 2016; 75(2): 188-98. doi: 10.1017/S0029665115004279.
29. Kuwada K., Kuroda S., Kikuchi S., Yoshida R., Nishizaki M., Kagawa S., Fujiwara T. Clinical Impact of Sarcopenia on Gastric Cancer. Anticancer Res. 2019; 39(5): 2241-9. doi: 10.21873/anticanres.13340.
30. Shachar S.S., Williams G.R., Muss H.B., Nishijima T.F. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur J Cancer. 2016; 57: 58-67. doi: 10.1016/j.ejca.2015.12.030.
31. Peixoto da Silva S., Santos J.M.O., Costa E Silva M.P., Gil da Costa R.M., Medeiros R. Cancer cachexia and its pathophysiology: links with sarcopenia, anorexia and asthenia. J Cachexia Sarcopenia Muscle. 2020; 11(3): 619-35. doi: 10.1002/jcsm.12528.
32. Bozzetti F. Chemotherapy-Induced Sarcopenia. Curr Treat Options Oncol. 2020; 21(1): 7. doi: 10.1007/s11864-019-0691-9.
33. Bruggeman A.R., Kamal A.H., LeBlanc T.W., Ma J.D., Baracos V.E., Roeland E.J. Cancer Cachexia: Beyond Weight Loss. J Oncol Pract. 2016; 12(11): 1163-71. doi: 10.1200/JOP.2016.016832.
34. Begini P., Gigante E., Antonelli G., Carbonetti F., Iannicelli E., Anania G., Imperatrice B., Pellicelli A.M., Fave G.D., Marignani M. Sarcopenia predicts reduced survival in patients with hepatocellular carcinoma at first diagnosis. Ann Hepatol. 2017; 16(1): 107-14. doi: 10.5604/16652681.1226821.
35. Nishimura J.M., Ansari A.Z., D'Souza D.M., Moffatt-Bruce S.D., Merritt R.E., Kneuertz P.J. Computed Tomography-Assessed Skeletal Muscle Mass as a Predictor of Outcomes in Lung Cancer Surgery. Ann Thorac Surg. 2019; 108(5): 1555-64. doi: 10.1016/j.athoracsur.2019.04.090.
36. Su H., Ruan J., Chen T., Lin E., Shi L. CT-assessed sarcopenia is a predictive factor for both long-term and short-term outcomes in gastrointestinal oncology patients: a systematic review and meta-analysis. Cancer Imaging. 2019; 19(1): 82. doi: 10.1186/s40644-019-0270-0.
37. PradoCM., Baracos VE., McCargar LJ., Reiman T., Mourizakis M., Tonkin K., Mackey J.R., Koski S., Pituskin E., Sawyer M.B. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res. 2009; 15(8): 2920-6. doi: 10.1158/1078-0432.CCR-08-2242.
38. Prado C.M., Baracos V.E., McCargar L.J., Mourtzakis M., Mulder K.E., Reiman T., Butts C.A., Scarfe A.G., Sawyer M.B. Body composition as an independent determinant of 5-fluorouracil-based chemotherapy toxicity. Clin Cancer Res. 2007; 13(11): 3264-8. doi: 10.1158/1078-0432. CCR-06-3067.
39. Antoun S., Baracos VE., Birdsell L., Escudier B., Sawyer M.B. Low body mass index and sarcopenia associated with dose-limiting toxicity of sorafenib in patients with renal cell carcinoma. Ann Oncol. 2010; 21(8): 1594-8. doi: 10.1093/annonc/mdp605.
40. Swartz J.E., Pothen A.J., Wegner I., Smid E.J., Swart K.M., de Bree R., Leenen L.P., Grolman W. Feasibility of using head and neck CT imaging to assess skeletal muscle mass in head and neck cancer patients. Oral Oncol. 2016; 62: 28-33. doi: 10.1016/j.oraloncology.2016.09.006.
41. Wendrich A.W., Swartz J.E., Bril S.I., Wegner I., de Graeff A., Smid E.J., de Bree R., Pothen A.J. Low skeletal muscle mass is a predictive factor for chemotherapy dose-limiting toxicity in patients with locally advanced head and neck cancer. Oral Oncol. 2017; 71: 26-33. doi: 10.1016/j.oraloncology.2017.05.012.
42. Bril S.I., Al-Mamgani A., Chargi N., Remeijer P., Devriese L.A., de Boer J.P., de Bree R. The association of pretreatment low skeletal muscle mass with chemotherapy dose-limiting toxicity in patients with head and neck cancer undergoing primary chemoradiotherapy with high-dose cisplatin. Head Neck. 2022; 44(1): 189-200. doi: 10.1002/hed.26919.
43. Ansari E., Chargi N., van Gemert J.T.M., van Es R.J.J., Dieleman F.J., Rosenberg A.J.W.P., Van Cann E.M., de Bree R. Low skeletal muscle mass is a strong predictive factor for surgical complications and a prognostic factor in oral cancer patients undergoing mandibular reconstruction with a free fibula flap. Oral Oncol. 2020; 101. doi: 10.1016/j.oraloncology.2019.104530.
44. Alwani M.M., Jones A.J., Novinger L.J., Pittelkow E., Bonetto A., Sim M.W., Moore M.G., Mantravadi A.V. Impact of Sarcopenia on Outcomes of Autologous Head and Neck Free Tissue Reconstruction. J Reconstr Microsurg. 2020; 36(5): 369-78. doi: 10.1055/s-0040-1701696. Erratum in: J Reconstr Microsurg. 2020.
45. Surov A., Wienke A. Low skeletal muscle mass predicts relevant clinical outcomes in head and neck squamous cell carcinoma. A meta-analysis. Ther Adv Med Oncol. 2021; 13: 1-14. doi: 10.1177/1758835921100884.
Review
For citations:
Sheberova E.V., Silanteva N.K., Agababian T.A., Potapov A.L., Nevolskikh A.A., Ivanov S.A., Kaprin A.D. Role of computed tomography in sarcopenia detection. Siberian journal of oncology. 2023;22(3):125-133. (In Russ.) https://doi.org/10.21294/1814-4861-2023-22-3-125-133