Preview

Siberian journal of oncology

Advanced search

Feasibility of simultaneous integrated boost for high-dose treatment of high-risk prostate cancer

https://doi.org/10.21294/1814-4861-2023-22-3-57-65

Abstract

Background. Radiation therapy for high-risk prostate cancer presents a challenge for cancer radiotherapists. The improvement of treatment outcomes is associated with radiation dose escalation and prophylactic irradiation of lymph nodes, therefore, the development of the new treatment schemes is needed. Simultaneous integrated boost technique based on the volumetric modulated arc therapy is the most efficient treatment option. Material and Methods. The anatomical data of 10 patients with high-risk prostate cancer was used for dosimetry-based treatment planning. Both simultaneous integrated boost and sequential boost technique were considered. The treatment planning goal was to deliver the equivalent dose of 96 Gy at 2 Gy per fraction (EQD2=96 Gy) (α/β=1.5 Gy) to the prostate, EQD2=62.5 Gy to the seminal vesicles and EQD2=50 Gy to lymph nodes avoiding damaging the organs at risk, mainly the bladder and rectum. The irradiation was based on volumetric modulated arc therapy with two partially coplanar arcs and two rotations at each arc. The obtained dose distributions were compared with respect to dose-volume histograms and equivalent uniform doses (EUD). Results. In the case of sequential boost, the minimal dose delivered to the prostate was equal to 95.9 ± 2.1 Gy, EUD=104.9 ± 1.7 Gy. The dose delivered to 2 cm3 (D2cc) bladder was 97.4 ± 2.0 Gy. Normal tissue complication probability (NTCP) was 1.64 %. The dose delivered to 2 cm3 (D2cc) rectum was 103.4 ± 9.2 Gy and NTCP was 27.4 %. In the case of simultaneous integrated boost, the minimal dose delivered to the prostate was equal to 90.4 ± 2.3 Gy, EUD=103.9 ± 1.3 Gy. The bladder dose was as high as D2cc=96.1 ± 5.2 Gy, NTCP=0.176 ± 0.132 %, the rectum dose - D2cc=81.1 ± 6.0 Gy, NTCP=2.34 ± 1.92 %. Conclusion. Volumetric modulated arc therapy along with simultaneous integrated boost have shown the feasibility of simultaneous irradiation of the prostate, seminal vesicles and lymph nodes up to the prescribed dose values without significant over irradiation of the organs at risk (OARs). Dose values in the tumor as high as EUD=103.9 ± 1.3 Gy along with prophylactic irradiation of lymph nodes may result in higher tumor control probability value and should be considered for clinical trials.

About the Authors

E. S. Sukhikh
Tomsk Polytechnic University; Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Evgeniya S. Sukhikh - PhD, Head of the Technological Reference Center for Ionizing Radiation in Radiology, Radiation Therapy and Nuclear Medicine, Tomsk Polytechnic University; Researcher of the Radiotherapy Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences.

30, Lenin Ave., 634050, Tomsk; 5, Kooperativny St., 634009, Tomsk

Author ID (Scopus): 57200560611



L. G. Sukhikh
Tomsk Polytechnic University
Russian Federation

Leonid G. Sukhikh - DSc, Vice Rector for Science and Technology Transfer, Tomsk Polytechnic University.

30, Lenin Ave., 634050, Tomsk

Researcher ID: I-5274-2013; Author ID (Scopus): 14828396300



A. V. Taletsky
Tomsk Regional Oncological Dispensary
Russian Federation

Alexander V. Taletsky - MD, Radiotherapist, Tomsk Regional Oncological Dispensary.

115, Lenina Ave., 634050, Tomsk



Zh. A. Startseva
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Zhanna A. Startseva - MD, DSc, Professor of the Russian Academy of Sciences, Chief Freelance Radiotherapist in the Siberian Federal District, Head of the Radiotherapy Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences.

5, Kooperativny St., 634009, Tomsk

Author ID (Scopus): 6506368484



V. V. Verkhoturova
Tomsk Polytechnic University
Russian Federation

Vera V. Verkhoturova - PhD, Acting Head, Scientific and Educational Center for International Nuclear Education and Career Support for Foreign Students, Tomsk Polytechnic University.

30, Lenin Ave., 634050, Tomsk

Author ID (Scopus): 57189517036



V. V. Rozanov
Lomonosov Moscow State University; All-Russian Research Institute of Medicinal and Aromatic Plants
Russian Federation

Vladimir V. Rozanov - Professor, Leading Researcher, Faculty of Physics, Lomonosov Moscow State University; Head of Laboratory, All-Russian Research Institute of Medicinal and Aromatic Plants.

1, Leninskie Gory, 119991, Moscow; 7, Grina St., 117216, Moscow

Author ID (Scopus): 31367574400



E. A. Selikhova
Tomsk Polytechnic University; Tomsk Regional Oncological Dispensary
Russian Federation

Ekaterina A. Selikhova - Technician, Tomsk Regional Oncological Dispensary; postgraduate student, Tomsk Polytechnic University.

30, Lenin Ave., 634050, Tomsk; 115, Lenina Ave., 634050, Tomsk

Author ID (Scopus): 57194633777



References

1. Heidenreich A., Bastian P.J., Bellmunt J., Bolla M., Joniau S., van der Kwast T., Mason M., Matveev V., Wiegel T., Zatton. F., Mottet N.; European Association of Urology. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 2014; 65(1): 124-37. doi: 10.1016/j.eururo.2013.09.046.

2. Kaprin A.D., Starinsky V.V., Petrova G.V. Malignant neoplasms in Russia in 2019 (incidence and mortality). Moscow, 2020. 252 p. (in Russian).

3. Brenner D.J., Hall E.J. Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys. 1999; 43(5): 1095-101. doi: 10.1016/s0360-3016(98)00438-6.

4. Fowler J., Chappell R., Ritter M. Is alpha/beta for prostate tumors really low? Int J Radiat Oncol Biol Phys. 2001; 50(4): 1021-31. doi: 10.1016/s0360-3016(01)01607-8.

5. Syed Y.A., Patel-Yadav A.K., Rivers C., Singh A.K. Stereotactic radiotherapy for prostate cancer: A review and future directions. World J Clin Oncol. 2017; 8(5): 389-97. doi: 10.5306/wjco.v8.i5.389.

6. Royce T., Mavro.d.s P., Wang K., Falchook A., Sheets N., Fuller D., Collins S., El Naqa I., Song D., Ding G., Nahum A., Jackson A., Grimm J., Yorke E., Chen R. Tumor control probability modeling and systematic review of the literature of stereotactic body radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2021; 110(1): 227-36. doi:10.1016/j.ijrobp.2020.08.014.

7. Sandler K.A., Cook R.R., Ciezki J.P., Ross A.E., Pomerantz M.M., Nguyen P.L., Shaikh T., Tran P.T., Stock R.G., Merrick G.S., Demanes D.J., Spratt D.E., Abu-Isa E.I., Wedde T.B., Lilleby W., Krauss D.J., Shaw G.K., Alam R., Reddy C.A., Song D.Y., Klein E.A., Stephenson A.J., Tosoian J.J., Hegde J.V., Yoo S.M., Fiano R., D'Amico A.V., Nickols N.G., Aronson W.J., Sadeghi A., Greco S.C., Deville C. Jr, McNutt T., DeWeese T.L., Reiter R.E., Said J.W., Steinberg M.L., Horwitz E.M., Kupelian P.A., King C.R., Kishan A.U. Prostate-only Versus Whole-pelvis Radiation with or Without a Brachytherapy Boost for Gleason Grade Group 5 Prostate Cancer: A Retrospective Analysis. Eur Urol. 2020; 77(1): 3-10. doi: 10.1016/j.eururo.2019.03.022.

8. Combifix [Internet]. [cited 2022 Sep 19]. URL: https://civcort.com/ro/hip-pelvic-positioning/bellyboards/combifix-HP2.htm.

9. Geinitz H., Roach III M., Van As N. Radiotherapy in Prostate Cancer Innovative Techniques and Current Controversies. Springer-Verlag, Berlin Heidelberg. 2015. doi: 10.1007/978-3-642-37099-1.

10. Elekta Synergy [Internet]. [cited 2022 Sep 23]. URL: https://www.elekta.com/products/radiation-therapy/synergy/.

11. Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 1997; 24(1): 103-10. doi: 10.1118/1.598063.

12. Brenner D.J. Fractionation and late rectal toxicity. Int J Radiat Oncol Biol Phys. 2004; 60(4): 1013-5. doi: 10.1016/j.ijrobp.2004.04.014.

13. Oinam A.S., Singh L., Shukla A., Ghoshal S., Kapoor R., Sharma S.C. Dose volume histogram analysis and comparison of different radiobiological models using in-house developed software. J Med Phys. 2011; 36(4): 220-9. doi: 10.4103/0971-6203.89971.

14. Rana S., Cheng C., Zhao L., Park S., Larson G., Vargas C., Dunn M., Zheng Y. Dosimetric and radiobiological impact of intensity modulated proton therapy and RapidArc planning for high-risk prostate cancer with seminal vesicles. J Med Radiat Sci. 2017; 64(1): 18-24. doi: 10.1002/jmrs.175.

15. Sumida I., Yamaguchi H., Kizaki H., Aboshi K., Tsujii M., Yoshikawa N., Yamada Y., Suzuki O., Seo Y., Isohashi F., Yoshioka Y., Ogawa K. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution. Int J Radiat Oncol Biol Phys. 2015; 92(4): 779-86. doi: 10.1016/j.ijrobp.2015.02.041.

16. Arcangeli G., Saracino B., Arcangeli S., Gomellini S., Petrongari M.G., Sanguineti G., Strigari L. Moderate Hypofractionation in High-Risk, Organ-Confined Prostate Cancer: Final Results of a Phase III Randomized Trial. J Clin Oncol. 2017; 35(17): 1891-7. doi: 10.1200/JCO.2016.70.4189.

17. Tamihardja J., Schortmann M., Lawrenz I., Weick S., Bratengeier K., Flentje M., Guckenberger M., Polat B. Moderately hypofractionated radiotherapy for localized prostate cancer: updated long-term outcome and toxicity analysis. Strahlenther Onkol. 2021; 197(2): 124-32. doi: 10.1007/s00066-020-01678-w.

18. Guckenberger M., Lawrenz I., Flentje M. Moderately hypofraction-ated radiotherapy for localized prostate cancer: long-term outcome using IMRT and volumetric IGRT. Strahlenther Onkol. 2014; 190(1): 48-53. doi: 10.1007/s00066-013-0443-x.

19. Yamazaki H., Suzuki G., Masui K., Aibe N., Shimizu D., Kimoto T., Yoshida K., Nakamura S., Okabe H. Radiotherapy for Clinically Localized T3b or T4 Very-High-Risk Prostate Cancer-Role of Dose Escalation Using High-Dose-Rate Brachytherapy Boost or High Dose Intensity Modulated Radiotherapy. Cancers (Basel). 2021; 13(8): 1856. doi: 10.3390/cancers13081856.

20. Katz A., Formenti S., Kang J. Predicting biochemical disease-free survival after prostate stereotactic body radiotherapy: Risk-stratification and patterns of failure. Frontiers in Oncology. 2016; 6: 168. doi:10.3389/fonc.2016.00168.

21. Kang J.K., Cho C.K., Choi C.W., Yoo S., Kim M.S., Yang K., Yoo H., Kim J.H., Seo Y.S., Lee D.H., Jo M. Image-guided stereotactic body radiation therapy for localized prostate cancer. Tumori. 2011; 97(1): 43-8. doi: 10.1177/030089161109700109.

22. Bernetich M., Oliai C., Lanciano R., Hanlon A., Lamond J., Arrigo S., Yang J., Good M., Feng J., Brown R., Garber B., Mooreville M., Brady L.W. SBRT for the Primary Treatment of Localized Prostate Cancer: The Effect of Gleason Score, Dose and Heterogeneity of Intermediate Risk on Outcome Utilizing 2.2014 NCCN Risk Stratification Guidelines. Front Oncol. 2014; 4: 312. doi: 10.3389/fonc.2014.00312.


Review

For citations:


Sukhikh E.S., Sukhikh L.G., Taletsky A.V., Startseva Zh.A., Verkhoturova V.V., Rozanov V.V., Selikhova E.A. Feasibility of simultaneous integrated boost for high-dose treatment of high-risk prostate cancer. Siberian journal of oncology. 2023;22(3):57-65. https://doi.org/10.21294/1814-4861-2023-22-3-57-65

Views: 931


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)