Preview

Siberian journal of oncology

Advanced search

Ascite-solid model of prostate cancer and its morphological characteristics

https://doi.org/10.21294/1814-4861-2023-22-4-65-73

Abstract

Targeted therapy and immunotherapy are considered promising novel therapies capable of increasing the effcacy of prostate cancer (PCa) treatment.
The purpose of the study was to obtain and characterize TRAMP-C2 subcutaneous and ascite-solid models of prostate cancer in C57Bl/6j mice to study specifc anti-tumor activity of the candidate molecules of targeted drugs and adjust immunotherapy strategies in an evidence-based manner.
Material and Methods. We used cultured TRAMP-C2 cells in subcutaneous and ascites mouse prostate cancer models. Histological and immunohistochemical methods were used to study the tumor tissues.
Results. The high in vivo growth ability of TRAMP-C2 cells was demonstrated in subcutaneous and intraperitoneal inoculation of C57Bl/6j mice. These tumors are characterized by a high reproducibility and level of PSMA expression. Histological study showed that subcutaneous and carcinomatous TRAMP-C2 tumor nodules had solid structure morphologically corresponding to low differentiated neoplasm, cytomorphological analysis of smears showed that peritoneal fuid containd a large number of rounded tumor cells, macrophages and erythrocytes.
Conclusion. The obtained subcutaneous and ascite-solid models of TRAMP-C2 can be useful for the development of new ways to effectively treat cancer, including targeted and immunotherapy, as well as for the experimental study of biotherapeutic effects using PSMA as a target, and photoinduced effects.

About the Authors

E. A. Plotnikova
P.A. Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia; Russian Technological University – MIREA, M.V. Lomonosov Institute of Fine Chemical Technology
Russian Federation

Ekaterina A. Plotnikova, PhD, Senior Researcher; Associate Professor of the Base Department “Cellular Systems Engineering”, 
Researcher ID (WOS): L-7226-2015. Author ID (Scopus): 55416518700. 

3, 2nd Botkinsky proezd, 125284, Moscow;
86, Vernadskogo Ave., 119571, Moscow



N. B. Morozova
P.A. Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia
Russian Federation

Natalya B. Morozova, PhD, Senior Researcher, 
Researcher ID (WOS): AAB-4968-2020. Author ID (Scopus): 24473503000 

3, 2nd Botkinsky proezd, 125284, Moscow



A. V. Ryabova
A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Anastasia V. Ryabova, PhD, Senior Researcher,
Researcher ID (WOS): N-3902-2013. Author ID (Scopus): 7003565033.

38, Vavilova St., 119991, Moscow



G. V. Trunova
P.A. Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia
Russian Federation

Galina V. Trunova, PhD, Senior Researcher,
Researcher ID (WOS): AAE-2433-2021. Author ID (Scopus): 6507849630 

3, 2nd Botkinsky proezd, 125284, Moscow



V. A. Khokhlova
P.A. Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia
Russian Federation

Varvara A. Khokhlova, Junior Researcher,
Researcher ID (WOS): AAE-2204-2021. Author ID (Scopus): 57902411100 

3, 2nd Botkinsky proezd, 125284, Moscow



V. B. Loschenov
A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Viktor B. Loschenov, Professor, Head of the Laboratory,
Researcher ID (WOS): N-3902-2013. Author ID (Scopus): 7003565033. 

38, Vavilova St., 119991, Moscow



A. A. Pankratov
P.A. Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia; Russian Technological University – MIREA, M.V. Lomonosov Institute of Fine Chemical Technology
Russian Federation

Andrey A. Pankratov, PhD, Head of the Laboratory; Associate Professor of the Basic Department “Cell Systems Engineering”,
Researcher ID (WOS): A-2317-2019. Author ID (Scopus): 24473185200 

3, 2nd Botkinsky proezd, 125284, Moscow;
86, Vernadskogo Ave., 119571, Moscow



A. D. Kaprin
P.A. Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia
Russian Federation

Andrey D. Kaprin, MD, Academician of the Russian Academy of Sciences, Director, 
Researcher ID (WOS): К-1445-2014. Author ID (Scopus): 660270985. 

3, 2nd Botkinsky proezd, 125284, Moscow



References

1. Malignant tumors in Russia in 2019 (morbidity and mortality). Ed. by A.D. Kaprin, V.V. Starinsky, G.V. Petrova. Moscow, 2020. 250 p. (in Russian).

2. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209–49. doi: 10.3322/caac.21660.

3. Kaprin A.D., Alekseev B.Ia., Matveev V.B., Pushkar D.Iu., Govorov A.V., Gorban N.A., Kirichek A.A., Biriukov V.A., Volkova M.I., Gulidov I.A., Gumenetskaia Iu.V., Krylov V.V., Kariakin O.B., Krasheninnikov A.A., Mardynskii Iu.S., Niushko K.M., Zakharova T.I., Kostin A.A., Khmelevskii E.V., Fedenko A.A., Bolotina L.V., Falaleeva N.A., Filonenko E.V., Nevolskikh A.A., Ivanov S.A., Khailova Zh.V., Gevorkian T.G. Prostate cancer. Clinical recommendations. Journal of Modern Oncology. 2021; 23(2): 211–47. (in Russian). doi: 10.26442/18151434.2021.2.200959.

4. Labrie F. Hormonal Therapy of Prostate Cancer. Progress in Brain Research. 2010; 182: 321–41. doi: 10.1016/S0079-6123(10)82014-X.

5. Gay H.A., Michalski J.M. Radiation Therapy for Prostate Cancer. Mo Med. 2018; 115(2): 146–50.

6. Hurwitz M. Chemotherapy in Prostate Cancer. Curr Oncol Rep. 2015; 17(10): 44. doi: 10.1007/s11912-015-0468-7.

7. Joo W.D., Visintin I., Mor G. Targeted cancer therapy – are the days of systemic chemotherapy numbered? Maturitas. 2013; 76(4): 308–14. doi: 10.1016/j.maturitas.2013.09.008.

8. Waldman A.D., Fritz J.M., Lenardo M.J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020; 20(11): 651–68. doi: 10.1038/s41577-020-0306-5.

9. Zhou J. Advances and prospects in cancer immunotherapy. New Journal of Science 2014; 1–13. doi: 10.1155/2014/745808.

10. Yuzhakova D.V., Shirmanova М.V., Sergeeva Т.F., Zagaynova E.V., Lukyanov К.А. Immunotherapy of malignant neoplasms (review). Modern Technology in Medicine. 2016; 8(1): 173–82. doi: 10.17691/stm2016.8.1.23.

11. Cha H.R., Lee J.H., Ponnazhagan S. Revisiting Immunotherapy: A Focus on Prostate Cancer. Advances and Limitations of Immunotherapy in Prostate Cancer. Cancer Res. 2020; 80: 1615–23. doi: 10.1158/0008-5472.CAN-19-2948.

12. Karwacki J., Kiełbik A., Szlasa W., Sauer N., Kowalczyk K., Krajewski W., Saczko J., Kulbacka J., Szydełko T., Małkiewicz B. Boosting the Immune Response-Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells. 2022; 11(18): 2793. doi: 10.3390/cells11182793.

13. Connolly K.A., Fitzgerald B., Damo M., Joshi N.S. Novel Mouse Models for Cancer Immunology. Ann Rev Cancer Biol. 2022; 6(1): 269–91. doi: 10.1146/annurev-cancerbio-070620-105523.

14. Machulkin A.E., Uspenskaya A.A., Zyk N.U., Nimenko E.A., Ber A.P., Petrov S.A., Polshakov V.I., Shafkov R.R., Skvortsov D.A., Plotnikova E.A., Pankratov A.A., Smirnova G.B., Borisova Y.A., Pokrovsky V.S., Kolmogorov V.S., Vaneev A.N., Khudyakov A.D., Chepikova O.E., Kovalev S., Zamyatnin A.A. Jr, Erofeev A., Gorelkin P., Beloglazkina E.K., Zyk N.V., Khazanova E.S., Majouga A.G. Synthesis, Characterization, and Preclinical Evaluation of a Small-Molecule Prostate-Specifc Membrane AntigenTargeted Monomethyl Auristatin E Conjugate. J Med Chem. 2021; 64(23): 17123–45. doi: 10.1021/acs.jmedchem.1c01157.

15. Bella Á., Di Trani C.A., Fernández-Sendin M., Arrizabalaga L., Cirella A., Teijeira Á., Medina-Echeverz J., Melero I., Berraondo P., Aranda F. Mouse Models of Peritoneal Carcinomatosis to Develop Clinical Applications. Cancers (Basel). 2021; 13(5): 963. doi: 10.3390/cancers13050963.

16. Foster B.A., Gingrich J.R., Kwon E.D., Madias C., Greenberg N.M. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res. 1997; 57(16): 3325–30.

17. Guide for the laboratory animals and alternative models in biomedical research. Ed. N.N. Karkishchenko, S.V. Grachev. Moscow, 2010. 358 p. (in Russian).

18. Guide for the care and use of laboratory animals. Moscow, 2017. 336 p. (in Russian).

19. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientifc purposes. Offcial Journal of the European Union, 20.10.2010.

20. Vorontsova M.S., Karmakova T.A., Plotnikova E.A., Morozova N.B., Abakumov M.A., Yakubovskaya R.I., Alexeev B.Y. Subcutaneous and orthotopic xenograft models of human bladder carcinoma in nude mice for epidermal growth factor receptortargeted treatment. Russian Journal of Biotherapy. 2018; 17(2): 31–40. (in Russian). doi: 10.17650/1726-9784-2018-17-2-31-40.


Review

For citations:


Plotnikova E.A., Morozova N.B., Ryabova A.V., Trunova G.V., Khokhlova V.A., Loschenov V.B., Pankratov A.A., Kaprin A.D. Ascite-solid model of prostate cancer and its morphological characteristics. Siberian journal of oncology. 2023;22(4):65-73. (In Russ.) https://doi.org/10.21294/1814-4861-2023-22-4-65-73

Views: 395


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)