Long-term effects of cytostatic agents on germ cells of testicular tissue (experimental study)
https://doi.org/10.21294/1814-4861-2023-22-4-74-83
Abstract
Currently, cytostatic drugs are widely used not only in cancer treatment, but also in the treatment of autoimmune infammatory diseases. A favorable prognosis of the disease, ability to reproduce, young age and the absence of children serve as an incentive to decide on the need for childbearing. There is concern, that the mutagenic effects of chemotherapy in germ cells, the ability to induce epigenetic changes in them, may have phenotypic manifestations in offspring. Conception in the early stages after treatment (impact on mature and differentiating germ cells) has been proven to increase the risk of defective offspring. Data on the health of the offspring of patients conceived in the long term after treatment (impact on stem spermatogenic cells) are contradictory.
The aim of the study was to assess long-term toxic effects of cytostatic drugs in the male rat offspring copulated in terms corresponding to the effect on stem spermatogonial cells (SSCs).
Material and Methods. The experiments were carried out on autobred male Wistar rats (n=140), aged 2.5 months, 70 of which made up the group of intact animals. The effect of cytostatic drugs (etoposide, irinotecan, cisplatin, carboplatin, methotrexate, farmorubicin, and paclitaxel) injected 3 and 6 months before mating was assessed on the offspring of intact female and male rats.
Results. The male rat offspring treated with cytostatic drugs was found to be viable. Gross external developmental anomalies were detected in 2 cases. In several offspring, a slowdown in physical development, decrease in the rate of formation of sensory-motor refexes and learning ability were observed. The most toxic drugs were etoposide and paclitaxel.
Conclusion. The offspring of rats treated with cytostatic drugs in terms corresponding to the effect on the SSCs is at risk. The degree of severity of long-term effects varies signifcantly and depends on the type of the drugs used. A decrease in the ability to learn is the most frequently detected abnormalities in offspring. Judging by the timing of conception after cytostatic exposure, a signifcant increase in the period of time after the administration of the drug before mating is not always justifed.
About the Authors
T. G. BorovskayaRussian Federation
Tatyana G. Borovskaya, Professor, Head of the Laboratory of Pharmacology of the Reproductive System,
Researcher ID (WOS): I-9421-2017. Author ID (Scopus): 6602710212.
3, Lenin Ave., 634009, Tomsk
A. V. Vychuzhanina
Russian Federation
Аnna V. Vychuzhanina, PhD, Senior Research, Laboratory of Pharmacology of the Reproductive System,
Researcher ID (WOS): J-1763-2017. Author ID (Scopus): 54400640200.
3, Lenin Ave., 634009, Tomsk
Yu. A. Shchemerova
Russian Federation
Yuliya A. Shchemerovа, PhD, Research, Laboratory of Pharmacology of the Reproductive System,
Researcher ID (WOS): D-1212-2018. Author ID (Scopus): 9842887800.
3, Lenin Ave., 634009, Tomsk
S. I. Kseneva
Russian Federation
Svetlana I. Kseneva, MD, DSc, Chief Physician of the Clinic, Researcher of the Laboratory of Physiology, Molecular and Clinical Pharmacology,
Researcher ID (WOS): J-2325-2017
3, Lenin Ave., 634009, Tomsk
T. I. Fomina
Russian Federation
Tatyana I. Fomina, MD, PhD, Senior Researcher in Drug Toxicology,
Researcher ID (WOS): J-3824- 2017. Author ID (Scopus): 7004276582.
3, Lenin Ave., 634009, Tomsk
E. A. Bokhan
Russian Federation
Elena A. Bokhan, Junior Research, Laboratory of Pharmacology of the Reproductive System,
3, Lenin Ave., 634009, Tomsk
V. E. Goldberg
Russian Federation
Viktor E. Goldberg, MD, Professor, Head of Chemotherapy Department,
Researcher ID (WOS): C-8911-2012. Author ID (Scopus): 54420064600.
5, Kooperativny St., 634009, Tomsk
References
1. Patel B.V., Hotaling J.M. Impact of chemotherapy on subsequent generations. Urol Oncol. 2020 Jan; 38(1): 10–3. doi: 10.1016/j.urolonc.2019.02.011.
2. Tremblay A., Beaud H., Delbès G. Efets transgénérationnels des chimiothérapies: l’exposition du père infuence-t-elle la santé des générations futures? [Transgenerational impact of chemotherapy: Would the father exposure impact the health of future progeny?]. Gynecol Obstet Fertil Senol. 2017; 45(11): 609–18. French. doi: 10.1016/j.gofs.2017.09.004.
3. Taylor P.C., Balsa Criado A., Mongey A.B., Avouac J., Marotte H., Mueller R.B. How to Get the Most from Methotrexate (MTX) Treatment for Your Rheumatoid Arthritis Patient?-MTX in the Treat-to-Target Strategy. J Clin Med. 2019; 8(4): 515. doi: 10.3390/jcm8040515.
4. SeppänenV.I., Artama M.S., Malila N.K., Pitkäniemi J.M., Rantanen M.E., Ritvanen A.K., Madanat-Harjuoja L.M. Risk for congenital anomalies in ofspring of childhood, adolescent and young adult cancer survivors. Int J Cancer. 2016; 139(8): 1721–30. doi: 10.1002/ijc.30226.
5. Ståhl O., Boyd H.A., Giwercman A., Lindholm M., Jensen A., Kjær S.K., Anderson H., Cavallin-Ståhl E., Rylander L. Risk of birth abnormalities in the ofspring of men with a history of cancer: a cohort study using Danish and Swedish national registries. J Natl Cancer Inst. 2011; 103(5): 398–406. doi: 10.1093/jnci/djq550.
6. Parekh N.V., Lundy S.D., Vij S.C. Fertility considerations in men with testicular cancer. Transl Androl Urol. 2020; 9(s1): 14–23. doi: 10.21037/tau.2019.08.08.
7. Gutierrez J.C., Hwang K. The toxicity of methotrexate in male fertility and paternal teratogenicity. Expert Opin Drug Metab Toxicol. 2017; 13(1): 51–8. doi: 10.1080/17425255.2017.1230198.
8. Borovskaya T.G., Goldberg V.E., Poluektova M.E., Shchemerova Yu.A., Vychuzhanina A.V., Grigorieva V.A., Kollantai O.V., Kamalova S.I. Experimental assessment of long-term efects of the toxic efect of cytostatic drugs on male reproductive function. Siberian Journal of Oncology. 2020; 19(1): 64–72. (in Russian). doi: 10.21294/1814-4861-2020-19-1-64-72.
9. Delessard M., Saulnier J., Rives A., Dumont L., Rondanino C., Rives N. Exposure to Chemotherapy During Childhood or Adulthood and Consequences on Spermatogenesis and Male Fertility. Int J Mol Sci. 2020; 21(4): 1454. doi: 10.3390/ijms21041454.
10. Okada K., Fujisawa M. Recovery of Spermatogenesis Following Cancer Treatment with Cytotoxic Chemotherapy and Radiotherapy. World J Mens Health. 2019; 37(2): 166–74. doi: 10.5534/wjmh.180043.
11. Paoli D., Pallotti F., Lenzi A., Lombardo F. Fatherhood and Sperm DNA Damage in Testicular Cancer Patients. Front Endocrinol (Lausanne). 2018; 9: 506. doi: 10.3389/fendo.2018.00506.
12. Ben Maamar M., Nilsson E.E., Skinner M.K. Epigenetic transgenerational inheritance, gametogenesis and germline development. Biol Reprod. 2021; 105(3): 570–92. doi: 10.1093/biolre/ioab085.
13. Gavriliouk D., Aitken R.J. Damage to Sperm DNA Mediated by Reactive Oxygen Species: Its Impact on Human Reproduction and the Health Trajectory of Ofspring. Adv Exp Med Biol. 2015; 868: 23–47. doi: 10.1007/978-3-319-18881-2_2.
14. Paltsev M.A. Biology of stem cells and cell technologies. 2 vol. Moscow, 2009. 456 p. (in Russian).
15. Robinson N., Casement J., Gunter MJ., Huybrechts I., Agudo A., Barranco M.R., Eichelmann F., Johnson T., Kaaks R., Pala V., Panico S., Sandanger T.M., Schultze M.B., Travis R.C., Rosario Tumino R., Vineis P., Weiderpass E., Skinner R., Sharp L., McKay J.A., Strathdee G. Anti-cancer therapy is associated with long-term epigenomic changes in childhood cancer survivors. Br J Cancer. 2022; 127: 288–300. doi: 10.1038/s41416-022-01792-9.
16. Lebedev I.N. Epigenetic aspects of violations of human embryonic development. Ecological Genetics. 2011; 9(3): 15–9. (in Russian). doi: 10.17816/ecogen9315-19.
17. Tesarik J. Paternal Efects on Embryonic Fetal and Ofspring Health: The Role of Epigenetics in the ICSI and ROSI Era. Innovations in Assisted Reproduction Technology; 2019. 248 p.
18. Meistrich M.L. Risks of genetic damage in ofspring conceived using spermatozoa produced during chemotherapy or radiotherapy. Andrology. 2020; 8(3): 545–58. doi: 10.1111/andr.12740.
19. Sakashita A., Yeh Y.V., Namekawa S.H., Lin S.P. Epigenomic and single-cell profling of human spermatogonial stem cells. Stem Cell Investig. 2018; 5: 11. doi: 10.21037/sci.2018.04.04.
20. Yamada M., Cai W., Martin L.A., N’Tumba-Byn T., Seandel M. Functional robustness of adult spermatogonial stem cells after induction of hyperactive Hras. PLoS Genet. 2019; 15(5). doi: 10.1371/journal.pgen.1008139.
21. Polyanskaya G.G. The problem of genome instability in cultured human stem cells. Cytology. 2014; 56(10): 697–707. (in Russian).
22. Shnorhavorian M., Schwartz S.M., Stansfeld B., Sadler-Riggleman I., Beck D., Skinner M.K. Diferential DNA Methylation Regions in Adult Human Sperm following Adolescent Chemotherapy: Potential for Epigenetic Inheritance. PLoS One. 2017; 12(2). doi: 10.1371/journal.pone.0170085.
23. Thompson R.P., Beck D., Nilsson E., Maamar M.B., Shnorhavorian M., Skinner M.K. Examination of generational impacts of adolescent chemotherapy: Ifosfamide and potential for epigenetic transgenerational inheritance. 2022; 25(12): 105570. doi: 10.1016/j.isci.2022.105570.
24. Durnev A.D., Smolnikova N.M., Skosyreva A.M., Shrede O.V., Gus’kova T.A., Verstakova O.L., Syubaev R.D. Guidelines for the study of reproductive toxicity of drugs. Preclinical Drug Research Guide. Moscow, 2013. P. 80–93. (in Russian)].
25. Ema M., Endoh K., Fukushima R., et al. Historical control data on developmental toxicity studies in rodents. Congenital Anomalies. 2014; 54(3): 150–61. doi: 10.1111/cga.12050.
26. Nakajima M., Usami M., Nakazawa K., Arishima K., Yamamoto M. Developmental toxicity of indium: embryotoxicity and teratogenicity in experimental animals. Congenit Anom (Kyoto). 2008; 48(4): 145–50. doi: 10.1111/j.1741-4520.2008.00197.x.
27. Soliman Y., Yusuf K., Blayney M., El Shahed A.I., Belik J. Neonatal coning secondary to hypoxic ischaemic encephalopathy: A case study and literature review. Paediatr Child Health. 2019; 26(2): 67–9. doi: 10.1093/pch/pxz138.
28. Zahid M., Khan A.H., Yunus Z.M., Chen B.C., Steinmann B., Johannes H., Afroze B. Inherited metabolic disorders presenting as hypoxic ischaemic encephalopathy: A case series of patients presenting at a tertiary care hospital in Pakistan. J Pak Med Assoc. 2019; 69(3): 432–6.
29. Demetriou C., Abu-Amero S., Thomas A.C., Ishida M., Aggarwal R., Al-Olabi L., Leon L.J., Stafford J.L., Syngelaki A., Peebles D., Nicolaides K.H., Regan L., Stanier P., Moore G.E. Paternally Expressed, Imprinted Insulin-Like Growth Factor-2 in Chorionic Villi Correlates Signifcantly with Birth Weight. Plos one. 2014; 9(1): 1–8. https://doi.org/10.1371/journal.pone.0085454.
30. Coppedè F., Cereda C., Lintas C., Stoccoro A. Editorial: Epigenetics of Neurodevelopmental, Neuromuscular and Neurodegenerative Disorders. Front Mol Neurosci. 2022; 15. doi: 10.3389/fnmol.2022.948827.
31. Kovalchuk A., Ilnytskyy Y., Woycicki R., Rodriguez-Juarez R., Metz G.A.S., Kovalchuk O. Adverse efects of paternal chemotherapy exposure on the progeny brain: intergenerational chemobrain. Oncotarget. 2018; 9(11): 10069–82. doi: 10.18632/oncotarget.24311.
32. Cacabelos R. Chapter 22 – Epigenetics and Pharmacoepigenetics of Neurodevelopmental and Neuropsychiatric Disorders. Pharmacoepigenetics. 2019; 10: 609–709. doi: 10.1016/B978-0-12-813939-4.00022-X.
33. Borovskaya T.G., Vychuzhanina A.V., Grigoryeva V.A., Kollantay O.V., Goldberg V.E., Dygai A.M. Evaluation of the efect of n-Tyrosol on the level of DNA damage in the DNA comet test in vivo. Bulletin of Experimental Biology and Medicine. 2020; 169(2): 193–6. (in Russian). http://iramn.ru/journals/bbm/2020/2/4779/.
34. Choucair F., Saliba E., Jaoude I.A., Hazzouri M. Antioxidants modulation of sperm genome and epigenome damage: Fact or fad? Converging evidence from animal and human studies. Middle East Fertility Society J. 2018; 23(2): 85–90. doi: 10.1016/j.mefs.2018.01.006.
35. Sosnina S.F., Sokolnikov M.E. Heritable efects in ofspring associated with harmful exposure to parents (Literature review). Radiation Hygiene. 2019; 12(3): 84–95. (in Russian). doi: 10.21514/1998-426X-2019-12-3-84-95.
36.
Review
For citations:
Borovskaya T.G., Vychuzhanina A.V., Shchemerova Yu.A., Kseneva S.I., Fomina T.I., Bokhan E.A., Goldberg V.E. Long-term effects of cytostatic agents on germ cells of testicular tissue (experimental study). Siberian journal of oncology. 2023;22(4):74-83. (In Russ.) https://doi.org/10.21294/1814-4861-2023-22-4-74-83