Interferon-γ and tumor growth
https://doi.org/10.21294/1814-4861-2023-22-4-118-127
Abstract
Purpose of the study: to analyze published data on the mechanisms of action of interferon gamma (IFN-γ) in tumor growth and to evaluate the possibility of its use in the treatment of solid tumors.
Material and Methods. More than 200 publications were found in the Scopus, Pubmed, eLibrary and other databases, the search keywords were: interferon gamma, tumor growth, cancer therapy. This review includes 54 papers.
Results. IFN-γ is a pleiotropic cytokine with antiviral, antitumor, and immunomodulatory functions and plays an important role in coordinating the innate and adaptive immune response. The success of immuno-oncology drugs and chemotherapy in the treatment of malignant tumors depends on the stimulation of the production and adequate signaling of IFN-γ. Suppression and loss of IFN-γ receptor and downstream signaling mediators, and amplifcation of molecules that inhibit the IFN-γ signaling pathway are common mechanisms for tumor cells to escape from the immune system. The development of malignant processes is accompanied by a change, more often a decrease, in the secretion of IFN-γ, which attracts the attention of researchers to its exogenous administration. Determination of the IFN-γ signature may be a predictive marker of clinical response to anticancer drug therapy. The antitumor properties of IFN-γ are largely dose-dependent, which has been clearly shown in clinical and experimental studies. Low doses of the drug often promote tumor growth. On the contrary, the use of high doses is usually accompanied by an antitumor effect. IFN-γ or its inducers remain promising agents for cancer therapy. Combinatorial strategies involving IFN-γ may be a rational option to overcome tumor resistance to blockade of immune checkpoints.
Conclusion. It is necessary to continue fundamental and applied research to study the feasibility of using interferon gamma as a therapeutic agent in tumor growth.
About the Authors
A. L. IlyushinRussian Federation
Andrey L. Ilyushin, MD, Chief Physician
4A, Fadeev St., 125047, Moscow
I. V. Bogdashin
Russian Federation
Igor V. Bogdashin, MD, PhD, Allergist-Immunologist
5 “A”, Kirova St., 644041, Omsk
A. Z. Aleksanyan
Russian Federation
Aleksan Z. Aleksanyan, MD, DSc, Oncologist
4A, Fadeev St., 125047, Moscow
V. V. Novikov
Russian Federation
Viktor V. Novikov, DSc, Professor of the Department of Molecular Biology and Immunology; Head of the Laboratory of Immunochemistry,
Author ID (Scopus): 7402005487
23, Gagarin Ave., 603950, Nizhny Novgorod;
71, Malaya Yamskaya St., 603950, Nizhny Novgorod
L. A. Ashrafyan
Russian Federation
Levon A. Ashrafyan, MD, DSc, Professor, Academician of the Russian Academy of Sciences, Director of the Institute of Oncogynecology and Mammology, Vice President; Deputy Director
4A, Fadeev St., 125047, Moscow;
4, Akademika Oparina St., 117198, Moscow
References
1. Mandai M., Hamanishi J., Abiko K., Matsumura N., Baba T., Konishi I. Dual Faces of IFNγ in Cancer Progression: A Role of PD-L1 Induction in the Determination of Pro- and Antitumor Immunity. Clin Cancer Res. 2016; 22(10): 2329–34. doi: 10.1158/1078-0432.CCR-16-0224.
2. Mendoza J.L., Escalante N.K., Jude K.M., Sotolongo Bellon J., Su L., Horton T.M., Tsutsumi N., Berardinelli S.J., Haltiwanger R.S., Piehler J., Engleman E.G., Garcia K.C. Structure of the IFNγ receptor complex guides design of biased agonists. Nature. 2019; 567 (7746): 56–60. doi: 10.1038/s41586-019-0988-7.
3. Burke J.D., Young H.A. IFN-γ: A cytokine at the right time, is in the right place. Semin Immunol. 2019; 43. doi: 10.1016/j.smim.2019.05.002.
4. Alspach E., Lussier D.M., Schreiber R.D. Interferon γ and Its Important Roles in Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring Harb Perspect Biol. 2019; 11(3): 1–20. doi: 10.1101/cshperspect.a028480.
5. Schmiedel B.J., Singh D., Madrigal A., Valdovino-Gonzalez A.G., White B.M., Zapardiel-Gonzalo J., Ha B., Altay G., Greenbaum J.A., McVicker G., Seumois G., Rao A., Kronenberg M., Peters B., Vijayanand P. Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell. 2018; 175(6): 1701–15. doi: 10.1016/j.cell.2018.10.022.
6. Negishi H., Tadatsugu T., Yanai H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harb Perspect Biol. 2017; 10(11): 1–15. doi: 10.1101/cshperspect.a028423.
7. Jorgovanovic D., Song M., Wang L., Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark Res. 2020; 8; 49. doi: 10.1186/s40364-020-00228-x.
8. Song M., Ping Y., Zhang K., Yang L., Li F., Zhang C., Cheng S., Yue D., Maimela N.R., Qu J., Liu S., Sun T., Li Z., Xia J., Zhang B., Wang L., Zhang Y. Low-Dose IFNγ Induces Tumor Cell Stemness in Tumor Microenvironment of Non-Small Cell Lung Cancer. Cancer Res. 2019; 79(14): 3737–48. doi: 10.1158/0008-5472.CAN-19-0596.
9. Zaidi M.R. The Interferon-Gamma Paradox in Cancer. J Interferon Cytokine Res. 2019; 39(1): 30–8. doi: 10.1089/jir.2018.0087.
10. Mojic M., Takeda K., Hayakawa Y. The Dark Side of IFN-γ: Its Role in Promoting Cancer Immunoevasion. Int J Mol Sci. 2018; 19(1): 89. doi: 10.3390/ijms19010089.
11. Kang K., Park S.H., Chen J., Qiao Y., Giannopoulou E., Berg K., Hanidu A., Li J., Nabozny G., Kang K., Park-Min K.H., Ivashkiv L.B. Interferon-γ Represses M2 Gene Expression in Human Macrophages by Disassembling Enhancers Bound by the Transcription Factor MAF. Immunity. 2017; 47(2): 235–50. doi: 10.1016/j.immuni.2017.07.017.
12. Bhat P., Leggatt G., Waterhouse N., Frazer I.H. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis. 2017; 8(6). doi: 10.1038/cddis.2017.67.
13. Paul S., Chhatar S., Mishra A., Lal G. Natural killer T cell activation increases iNOS+CD206-M1 macrophage and controls the growth of solid tumor. J Immunother Canc. 2019; 7(1): 1–13. doi: 10.1186/s40425-019-0697-7.
14. Fang P., Li X., Dai J., Cole L., Camacho J.A., Zhang Y., Ji Y., Wang J., Yang X.F., Wang H. Immune cell subset diferentiation and tissue infammation. J Hematol Oncol. 2018; 11(1): 97. doi: 10.1186/s13045-018-0637-x.
15. Ni L., Lu J. Interferon gamma in cancer immunotherapy. Cancer Med. 2018; 7: 4509–16. doi:10.1002/cam4.1700.
16. Gocher A.M., Workman C.J., Vignali D.A.A. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat Rev Immunol. 2022; 22(3): 158–72. doi: 10.1038/s41577-021-00566-3.
17. Ong C., Lyons A.B., Woods G.M., Flies A.S. Inducible IFN- γ expression for MHC-I upregulation in devil facial tumor cells. Front Immunol. 2019; 9: 1–9. doi: 10.3389/fmmu.2018.03117.
18. Wang Q.S., Shen S.Q., Sun H.W., Xing Z.X., Yang H.L. Interferongamma induces autophagy-associated apoptosis through in-duction of cPLA2- dependent mitochondrial ROS generation in colorectal cancer cells. Biochem Biophys Res Commun. 2018; 498(4): 1058–65. doi: 10.1016/j.bbrc.2018.03.118.
19. Spear P., Barber A., Rynda-Apple A., Sentman C.L. Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-gamma and GM-CSF. J Immunol. 2012; 188: 6389‐98. doi: 10.4049/jimmunol.1103019.
20. Fang C., Weng T., Hu S., Yuan Z., Xiong H., Huang B., Cai Y., Li L., Fu X. IFN-γ-induced ER stress impairs autophagy and triggers apoptosis in lung cancer cells. Oncoimmunology. 2021; 10(1). doi: 10.1080/2162402X.2021.1962591.
21. Kammertoens T., Friese C., Arina A., Idel C., Briesemeister D., Rothe M., Ivanov A., Szymborska A., Patone G., Kunz S., Sommermeyer D., Engels B., Leisegang M., Textor A., Fehling H.J., Fruttiger M., Lohoff M., Herrmann A., Yu H., Weichselbaum R., Uckert W., Hübner N., Gerhardt H., Beule D., Schreiber H., Blankenstein T. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature. 2017; 545(7652): 98–102. doi: 10.1038/nature22311.
22. Liu Y., Liang X., Yin X., Lv J., Tang K., Ma J., Ji T., Zhang H., Dong W., Jin X., Chen D., Li Y., Zhang S., Xie H.Q., Zhao B., Zhao T., Lu J., Hu Z.W., Cao X., Qin F.X., Huang B. Blockade of IDO-kynurenineAhR metabolic circuitry abrogates IFN-γ-induced immunologic dormancy of tumor-repopulating cells. Nat Commun. 2017; 8. doi: 10.1038/ncomms15207.
23. Glasner A., Levi A., Enk J., Isaacson B., Viukov S., Orlanski S., Scope A., Neuman T., Enk C.D., Hanna J.H., Sexl V., Jonjic S., Seliger B., Zitvogel L., Mandelboim O. NKp46 Receptor-Mediated Interferon-γ Production by Natural Killer Cells Increases Fibronectin 1 to Alter Tumor Architecture and Control Metastasis. Immunity. 2018; 48(1): 107–19. doi: 10.1016/j.immuni.2017.12.007. Erratum in: Immunity. 2018; 48(2): 396–8.
24. Isaeva V. G., Grivtsova L. Y., Zhovtun L. P., Samborskij S.M., Falaleeva N.A. Antitumor efect of recombinant interferongamma in an experimental model of Ehrlich’s bilateral solid carcinoma. Advances in Molecular Oncology. 2022; 9(2): 111–9. (in Russian). doi: 10.10.17650/2313-805X-2022‑9‑2‑111‑119.
25. Kaplan D.H., Shankaran V., Dighe A.S., Stockert E., Aguet M., Old L.J., Schreiber R.D. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA. 1998; 95(13): 7556–61. doi: 10.1073/pnas.95.13.7556.
26. Mucci A., Antonarelli G., Caserta C., Vittoria F.M., Desantis G., Pagani R., Greco Be, Casucci M., Escobar G., Passerini L., Lachmann N., Sanvito F., Barcella M., Merelli I., Naldini L., Gentner B. Myeloid cellbased delivery of IFN-γ reprograms the leukemia microenvironment and induces anti-tumoral immune responses. EMBO Mol Med. 2021; 13(10). doi: 10.15252/emmm.202013598.
27. Lo U.G., Pong R.C., Yang D., Gandee L., Hernandez E., Dang A., Lin C.J., Santoyo J., Ma S., Sonavane R., Huang J., Tseng S.F., Moro L., Arbini A.A., Kapur P., Raj G.V., He D., Lai C.H., Lin H., Hsieh J.T. IFNγInduced IFIT5 Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer via miRNA Processing. Cancer Res. 2019; 79(6): 1098–112. doi: 10.1158/0008-5472.CAN-18-2207.
28. Lo U.G., Bao J., Cen J., Yeh H.C., Luo J., Tan W., Hsieh J.T. Interferon-induced IFIT5 promotes epithelial-to-mesenchymal transition leading to renal cancer invasion. Am J Clin Exp Urol. 2019; 7(1): 31–45.
29. Korentzelos D., Wells A., Clark A.M. Interferon-γ increases sensitivity to chemotherapy and provides immunotherapy targets in models of metastatic castration-resistant prostate cancer. Sci Rep. 2022; 12(1): 6657. doi: 10.1038/s41598-022-10724-9.
30. Xu Y.H., Li Z.L., Qiu S.F. IFN-γ Induces Gastric Cancer Cell Proliferation and Metastasis Through Upregulation of Integrin β3-Mediated NF-κB Signaling. Transl Oncol. 2018; 11(1): 182–92. doi: 10.1016/j.tranon.2017.11.008.
31. Dillinger B., Ahmadi-Erber S., Lau M., Hoelzl M.A., Erhart F., Juergens B., Fuchs D., Heitger A., Ladisch S., Dohnal A.M. IFN-γ and tumor gangliosides: implications for the tumor microenvironment. Cell Immunol. 2018; 325: 33–40. doi: 10.1016/j.cellimm.2018.01.014.
32. Tong S., Cinelli M.A., El-Sayed N.S., Huang H., Patel A., Silverman R.B., Yang S. Inhibition of interferon-gamma-stimulated melanoma progression by targeting neuronal nitric oxide synthase (nNOS). Sci Rep. 2022; 12(1): 1701. doi: 10.1038/s41598-022-05394-6.
33. Talmadge J.E., Black P.L., Tribble H., Pennington R., Bowersox O., Schneider M., Phillips H. Preclinical approaches to the treatment of metastatic disease: therapeutic properties of rH TNF, rM IFN-gamma, and rH IL-2. Drugs Exp Clin Res. 1987; 13(6): 327–37.
34. Giannopoulos A., Constantinides C., Fokaeas E., Stravodimos C., Giannopoulou M., Kyroudi A., Gounaris A. The immunomodulating efect of interferon-gamma intravesical instillations in preventing bladder cancer recurrence. Clin Cancer Res. 2003; 9(15): 5550–8.
35. Marth C., Windbichler G.H., Hausmaninger H., Petru E., Estermann K., Pelzer A., Mueller-Holzner E. Interferon-gamma in combination with carboplatin and paclitaxel as a safe and efective frst-line treatment option for advanced ovarian cancer: results of a phase I/II study. Int J Gynecol Cancer. 2006; 16(4): 1522–8. doi: 10.1111/j.1525-1438.2006.00622.x.
36. Pyltsin S.P., Zlatnik E.Yu., Lazutin Yu.N., Sergostyants G.Z., Zakora G.I., Leyman I.A., Anistratov P.A. Efect of ingaron on the immune status of patients with lung adenocarcinoma during adjuvant treatment. Medical Immunology. 2014; 16(6): 559–66. (in Russian). doi: 10.15789/1563-0625-2014-6-559-566.
37. Ardzha A.Yu., Nepomnyashchaya E.M., Zlatnik E.Yu., Ulianova E.P., Verenikina E.V., Zhenilo O.E., Nikitina V.P., Menshenina A.P., Sagakyants A.B., Chernikova E.N., Yakubova D.Yu., Shulgina O.G. Characteristics of expression of some immunohistochemical markers in patients with stage IIIc-IV ovarian cancer as a criterion of efectiveness of chemoimmunotherapy. Science of the Young. 2020; 8(4): 582–90. (in Russian). doi: 10.23888/HMJ202084582-590.
38. Thibaut R., Bost P., Milo I., Cazaux M., Lemaître F., Garcia Z., Amit I., Breart B., Cornuot C., Schwikowski B., Bousso P. Bystander IFN-γ activity promotes widespread and sustained cytokine signaling altering the tumor microenvironment. Nat Cancer. 2020; 1(3): 302–14. doi: 10.1038/s43018-020-0038-2.
39. Garris C.S., Arlauckas S.P., Kohler R.H., Trefny M.P., Garren S., Piot C., Engblom C., Pfrschke C., Siwicki M., Gungabeesoon J., Freeman G.J., Warren S.E., Ong S., Browning E., Twitty C.G., Pierce R.H., Le M.H., Algazi A.P., Daud A.I., Pai S.I., Zippelius A., Weissleder R., Pittet M.J. Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-γ and IL-12. Immunity. 2018; 49(6): 1148–61. doi: 10.1016/j.immuni.2018.09.024.
40. Park A., Yang Y., Lee Y., Kim M.S., Park Y.J., Jung H., Kim T.D., Lee H.G., Choi I., Yoon S.R. Indoleamine-2,3-Dioxygenase in Thyroid Cancer Cells Suppresses Natural Killer Cell Function by Inhibiting NKG2D and NKp46 Expression via STAT Signaling Pathways. J Clin Med. 2019; 8(6): 842. doi: 10.3390/jcm8060842.
41. Xu Y.P., Lv L., Liu Y., Smith M.D., Li W.C., Tan X.M., Cheng M., Li Z., Bovino M., Aubé J., Xiong Y. Tumor suppressor TET2 promotes cancer immunity and immunotherapy efcacy. J Clin Invest. 2019; 129(10): 4316–31. doi: 10.1172/JCI129317.
42. Mimura K., Teh J.L., Okayama H., Shiraishi K., Kua L.F., Koh V., Smoot D.T., Ashktorab H., Oike T., Suzuki Y., Fazreen Z., Asuncion B.R., Shabbir A., Yong W.P., So J., Soong R., Kono K. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci. 2018; 109(1): 43–53. doi: 10.1111/cas.13424.
43. Sceneay J., Goreczny G.J., Wilson K., Morrow S., DeCristo M.J., Ubellacker J.M., Qin Y., Laszewski T., Stover D.G., Barrera V., Hutchinson J.N., Freedman R.A., Mittendorf E.A., McAllister S.S. Interferon Signaling Is Diminished with Age and Is Associated with Immune Checkpoint Blockade Efcacy in Triple-Negative Breast Cancer. Cancer Discov. 2019; 9(9): 1208–27. doi: 10.1158/2159-8290.CD-18-1454.
44. Gao J., Shi L.Z., Zhao H., Chen J., Xiong L., He Q., Chen T., Roszik J., Bernatchez C., Woodman S.E., Chen P.L., Hwu P., Allison J.P., Futreal A., Wargo J.A., Sharma P. Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell. 2016; 167(2): 397–404. doi: 10.1016/j.cell.2016.08.069.
45. Grasso C.S., Tsoi J., Onyshchenko M., Abril-Rodriguez G., Ross-Macdonald P., Wind-Rotolo M., Champhekar A., Medina E., Torrejon D.Y., Shin D.S., Tran P., Kim Y.J., Puig-Saus C., Campbell K., Vega-Crespo A., Quist M., Martignier C., Luke J.J., Wolchok J.D., Johnson D.B., Chmielowski B., Hodi F.S., Bhatia S., Sharfman W., Urba W.J., Slingluff C.L. Jr., Diab A., Haanen J.B.A.G., Algarra S.M., Pardoll D.M., Anagnostou V., Topalian S.L., Velculescu V.E., Speiser D.E., Kalbasi A., Ribas A. Conserved Interferon-γ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer Cell. 2020; 38(4): 500–15. doi: 10.1016/j.ccell.2020.08.005.
46. Zhang M., Huang L., Ding G., Huang H., Cao G., Sun X., Lou N., Wei Q., Shen T., Xu X., Cao L., Yan Q. Interferon gamma inhibits CXCL8-CXCR2 axis mediated tumor-associated macrophages tumor trafcking and enhances anti-PD1 efcacy in pancreatic cancer. J Immunother Cancer. 2020; 8(1). doi: 10.1136/jitc-2019-000308.
47. Zhang S., Kohli K., Black R.G., Yao L., Spadinger S.M., He Q., Pillarisetty V.G., Cranmer L.D., Van Tine B.A., Yee C., Pierce R.H., Riddell S.R., Jones R.L., Pollack S.M. Systemic Interferon-γ Increases MHC Class I Expression and T-cell Infltration in Cold Tumors: Results of a Phase 0 Clinical Trial. Cancer Immunol Res. 2019; 7(8): 1237–43. doi: 10.1158/2326-6066.CIR-18-0940.
48. Ayers M., Lunceford J., Nebozhyn M., Murphy E., Loboda A., Kaufman D.R., Albright A., Cheng J.D., Kang S.P., Shankaran V., Piha-Paul S.A., Yearley J., Seiwert T.Y., Ribas A., McClanahan T.K. IFN-γ-related mRNA profle predicts clinical response to PD-1 blockade. J Clin Invest. 2017; 127(8): 2930–40. doi: 10.1172/JCI91190.
49. Higgs B.W., Morehouse C.A., Streicher K., Brohawn P.Z., Pilataxi F., Gupta A., Ranade K. Interferon Gamma Messenger RNA Signature in Tumor Biopsies Predicts Outcomes in Patients with Non-Small Cell Lung Carcinoma or Urothelial Cancer Treated with Durvalumab. Clin Cancer Res. 2018; 24(16): 3857–66. doi: 10.1158/1078-0432.CCR-17-3451.
50. Liu L., Du X., Fang J., Zhao J., Guo Y., Zhao Y., Zou C., Yan X., Li W. Development of an Interferon Gamma Response-Related Signature for Prediction of Survival in Clear Cell Renal Cell Carcinoma. J Infamm Res. 2021; 14: 4969–85. doi: 10.2147/JIR.S334041.
51. Reijers I.L.M., Dimitriadis P., Rozeman E.A., Krijgsman O., Cornelissen S., Bosch L.J.W., Broeks A., Menzies A., van de Wiel B.A., Scolyer R.A., Long G.V., Blank C.U. The interferon-gamma (IFN-y) signature from baseline tumor material predicts pathologic response after neoadjuvant ipilimumab (IPI) + nivolumab (NIVO) in stage III melanoma. J Clin Oncol. 2022; 40(16): 9539. doi: 10.1200/JCO.2022.40.16_suppl.9539.
52. Cui C., Xu C., Yang W., Chi Z., Sheng X., Si L., Xie Y., Yu J., Wang S., Yu R., Guo J., Kong Y. Ratio of the interferon-γ signature to the immunosuppression signature predicts anti-PD-1 therapy response in melanoma. NPJ Genom Med. 2021; 6(1): 7. doi: 10.1038/s41525-021-00169-w.
53. Tecalco-Cruz A.C., Macías-Silva M., Ramírez-Jarquín J.O., Méndez-Ambrosio B. Identifcation of genes modulated by interferon gamma in breast cancer cells. Biochem Biophys Rep. 2021; 27. doi: 10.1016/j.bbrep.2021.101053.
54. Boutsikou E., Domvri K., Hardavella G., Tsiouda D., Zarogoulidis K., Kontakiotis T. Tumour necrosis factor, interferon-gamma and interleukins as predictive markers of antiprogrammed cell-death protein-1 treatment in advanced non-small cell lung cancer: a pragmatic approach in clinical practice. Ther Adv Med Oncol. 2018; 10: 1–8. doi: 10.1177/1758835918768238.
Review
For citations:
Ilyushin A.L., Bogdashin I.V., Aleksanyan A.Z., Novikov V.V., Ashrafyan L.A. Interferon-γ and tumor growth. Siberian journal of oncology. 2023;22(4):118-127. (In Russ.) https://doi.org/10.21294/1814-4861-2023-22-4-118-127