Features of aminothiol metabolism and progression of breast cancer
https://doi.org/10.21294/1814-4861-2023-22-4-128-134
Abstract
Background. Imbalance of aminothiol metabolism is a potential risk factor for malignant transformation of cells and caner development, including breast cancer, which is the most commonly diagnosed cancer in the world.
The purpose of the study was to summarize the available data on the characteristics of thiol metabolism as one of the factors contributing to the progression of breast cancer.
Material and Methods. Data were searched from 1999 to 2022 using the Web of Science, Scopus, MedLine, The Cochrane Library, PubMed databases, which made it possible to assess the role of thiol-dependent metabolic disturbances in the regulation of tissue redox balance in breast cancer genesis.
Results. The review considers the results of both our own data and international studies on breast cancer, which suggest that an imbalance of thiol compounds necessary to maintain a moderately reducing cellular environment that counteracts oxidative stress during cellular metabolism and detoxifcation under conditions of tumor progression can provoke reprogramming of the leading links of antiblastoma resistance, contributing to cancer progression.
Conclusion. A more detailed study of the mechanisms of aminothiol metabolism in breast cancer emphasizes their particular importance for stabilizing the cellular genome and providing antitoxic protection of the cell, as well as understanding the important role of thiols as a coordination center in redox signaling. Disturbances at any stage of thiol metabolism can play an etiological role in oncogenetic pathologies, while the role of thiols as signaling molecules and the regulation of their metabolism should not be generalized for the entire group of diseases. Determination of serum markers of the redox state in patients with breast cancer, especially during antitumor therapy, can serve for an objective assessment of the effectiveness of treatment and the adaptive capabilities of the body, as well as predicting tumor growth and optimizing the program for screening and preventing cancer.
About the Author
A. V. MarkovskyRussian Federation
Alexandr V. Markovsky, MD, PhD, Researcher, Laboratory of Molecular Genetics, Research Institute of Molecular Medicine,
Researcher ID (WOS): AAO-7759-2020. Author ID (Scopus): 57200545719
39A, Gorky St., 672090, Chita
References
1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020; 70(1): 7–30. doi:10.3322/caac.21590.
2. Malignant tumors in Russia in 2019 (morbidity and mortality). Ed. by A.D. Kaprin, V.V. Starinsky, G.V. Petrova. Moscow, 2020. 250 p. (in Russian).
3. Ramírez-Expósito M.J., Sánchez-López E., Cueto-Ureña C., Dueñas B., Carrera-González P., Navarro-Cecilia J., Mayas M.D., Arias de Saavedra J.M., Sánchez-Agesta R., Martínez-Martos J.M. Circulating oxidative stress parameters in pre- and post-menopausal healthy women and in women sufering from breast cancer treated or not with neoadjuvant chemotherapy. Exp Gerontol. 2014; 58: 34–42. doi: 10.1016/j.exger.2014.07.006.
4. Jelic M.D., Mandic A.D., Maricic S.M., Srdjenovic B.U. Oxidative stress and its role in cancer. J Cancer Res Ther. 2021; 17(1): 22–8. doi: 10.4103/jcrt.JCRT_862_16.
5. Alpay M., Backman L.R., Cheng X., Dukel M., Kim W.J., Ai L., Brown K.D. Oxidative stress shapes breast cancer phenotype through chronic activation of ATM-dependent signaling. Breast Cancer Res Treat. 2015; 151(1): 75–87. doi: 10.1007/s10549-015-3368-5.
6. Sönmez M.G., Kozanhan B., Deniz Ç.D., Gögˇer Y.E., Kilinç M.T., Neşeliogˇlu S., Ere Ö. Is oxidative stress measured by thiol/disulphide homeostasis status associated with prostate adenocarcinoma? Cent Eur J Immunol. 2018; 43(2): 174–9. doi:10.5114/ceji.2017.72285.
7. Turell L., Radi R., Alvarez B. The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic Biol Med. 2013; 65: 244–53. doi: 10.1016/j.freeradbiomed.2013.05.050.
8. Wang P., Li C.G., Qi Z., Cui D., Ding S. Acute exercise stress promotes Ref1/Nrf2 signalling and increases mitochondrial antioxidant activity in skeletal muscle. Exp Physiol. 2016; 101(3): 410–20. doi: 10.1113/EP085493.
9. Cremers C.M., Jakob U. Oxidant sensing by reversible disulfde bond formation. J Biol Chem. 2013; 288(37): 26489–96. doi: 10.1074/jbc.R113.462929.
10. Watson W.H., Greenwell J.C., Zheng Y., Furmanek S., TorresGonzalez E., Ritzenthaler J.D., Roman J. Impact of sex, age and diet on the cysteine/cystine and glutathione/glutathione disulfde plasma redox couples in mice. J Nutr Biochem. 2020; 84. doi: 10.1016/j.jnutbio.2020.108431.
11. Hampton M.B., O’Connor K.M. Peroxiredoxins and the Regulation of Cell Death. Mol Cells. 2016; 39(1): 72–6. doi: 10.14348/molcells.2016.2351.
12. Jîtcă G., Ősz B.E., Tero-Vescan A., Miklos A.P., Rusz C.M., Bătrînu M.G., Vari C.E. Positive Aspects of Oxidative Stress at Diferent Levels of the Human Body: A Review. Antioxidants (Basel). 2022; 11(3): 572. doi: 10.3390/antiox11030572.
13. Demirseren D.D., Cicek C., Alisik M., Demirseren M.E., Aktaş A., Erel O. Dynamic thiol/disulphide homeostasis in patients with basal cell carcinoma. Cutan Ocul Toxicol. 2017; 36(3): 278–82. doi: 10.1080/15569527.2016.1268150.
14. Kayacan Y., Çetinkaya A., Yazar H., Makaracı Y. Oxidative stress response to diferent exercise intensity with an automated assay: thiol/disulphide homeostasis. Arch Physiol Biochem. 2021; 127(6): 504–8. doi: 10.1080/13813455.2019.1651868.
15. Oliveira P.V.S, Laurindo F.R.M. Implications of plasma thiol redox in disease. Clin Sci (Lond). 2018; 132(12): 1257–80. doi: 10.1042/CS20180157.
16. Rajendran P., Abdelsalam S.A., Renu K., Veeraraghavan V., Ben Ammar R., Ahmed E.A. Polyphenols as Potent Epigenetics Agents for Cancer. Int J Mol Sci. 2022; 23(19): 11712. doi: 10.3390/ijms231911712.
17. Kedzierska M., Olas B., Wachowicz B., Jeziorski A., Piekarski J. Relationship between thiol, tyrosine nitration and carbonyl formation as biomarkers of oxidative stress and changes of hemostatic function of plasma from breast cancer patients before surgery. Clin Biochem. 2012; 45(3): 231–6. doi: 10.1016/j.clinbiochem.2011.12.002.
18. Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012; 24(5): 981–90. doi: 10.1016/j.cellsig.2012.01.008.
19. Bachhawat A.K., Yadav S. The glutathione cycle: Glutathione metabolism beyond the γ-glutamyl cycle. IUBMB Life. 2018; 70(7): 585–92. doi: 10.1002/iub.1756.
20. Sateesh R., Rao Bitla A.R., Budugu S.R., Mutheeswariah Y., Narendra H., Phaneedra B.V., Lakshmi A.Y. Oxidative stress in relation to obesity in breast cancer. Indian J Cancer. 2019; 56(1): 41–4. doi: 10.4103/ijc.IJC_247_18.
21. Lu M.C., Ji J.A., Jiang Y.L., Chen Z.Y., Yuan Z.W., You Q.D., Jiang Z.Y. An inhibitor of the Keap1-Nrf2 protein-protein interaction protects NCM460 colonic cells and alleviates experimental colitis. Sci Rep. 2016; 6. doi: 10.1038/srep26585.
22. Li B., Qiu B., Lee D.S.M., Walton Z.E., Ochocki J.D., Mathew L.K., Mancuso A., Gade T.P.F., Keith B., Nissim I., Simon M.C. Fructose-1,6- bisphosphatase opposes renal carcinoma progression. Nature. 2014; 513: 251–5. doi: 10.1038/nature13557.
23. Zhang Z.Z., Lee E.E., Sudderth J., Yue Y., Zia A., Glass D., Deberardinis R.J., Wang R.C. Glutathione depletion, pentose phosphate pathway activation, and hemolysis in erythrocytes protecting cancer cells from vitamin C-induced oxidative stress. J Biol Chem. 2016; 291: 22861–7. doi: 10.1074/jbc.C116.748848.
24. Traverso N., Ricciarelli R., Nitti M., Marengo B., Furfaro A.L., Pronzato M.A., Marinari U.M., Domenicotti C. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev. 2013. doi: 10.1155/2013/972913.
25. Kalinina E.V., Gavriliuk L.A. Glutathione synthesis in cancer cells. Biochemistry. 2020; 85(8): 1051–65. (in Russian). doi: 10.31857/S0320972520080059.
26. Alanazi A.M., Mostafa G.A.E., Al-Badr A.A. Glutathione. Profles Drug Subst. Excip Relat Methodol. 2015; 40: 43–158. doi: 10.1016/bs.podrm.2015.02.001.
27. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013; 499(7456): 43–9. doi: 10.1038/nature12222.
28. Hofbauer S.L., Stangl K.I., M. de Martino, Lucca I., Haitel A., Shariat S.F., Klatte T. Pretherapeutic gamma-glutamyltransferase is an independent prognostic factor for patients with renal cell carcinoma. Br J Cancer. 2014; 111(8): 1526–31. doi: 10.1038/bjc.2014.450.
29. Pompella A., Corti A., Visvikis A. Redox Mechanisms in Cisplatin Resistance of Cancer Cells: The Twofold Role of GammaGlutamyltransferase 1 (GGT1). Front Oncol. 2022; 12. doi: 10.3389/fonc.2022.920316.
30. Corti A., Franzini M., Paolicchi A., Pompella A. Gamma-glutamyltransferase of cancer cells at the crossroads of tumor progression, drug resistance and drug targeting. Anticancer Res. 2010; 30(4): 1169–81.
31. Hecht F., Pessoa C.F., Gentile L.B., Rosenthal D., Carvalho D.P, Fortunato R.S. The role of oxidative stress on breast cancer development and therapy. Tumour Biol. 2016; 37(4): 4281–91. doi: 10.1007/s13277-016-4873-9.
32. Gurer-Orhan H., Ince E., Konyar D., Saso L., Suzen S. The Role of Oxidative Stress Modulators in Breast Cancer. Curr Med Chem. 2018; 25(33): 4084–101. doi: 10.2174/0929867324666170711114336.
33. Shakhristova E.V., Stepovaya E.A., Rudikov E.V., Sushitskaya O.S., Rodionova D.O., Novitsky V.V. The Role of Redox Proteins in Arresting Proliferation of Breast Epithelial Cells Under Oxidative Stress. Annals of the Russian Academy of Medical Sciences. 2018; 73(5): 289–93. (in Russian). doi: 10.15690/vramn1030.
34. Barskova L.S., Vitkina T.I. Regulation by thiol disulfide and antioxidant systems of oxidative stress induced by atmospheric suspended particles. Bulletin Physiology and Pathology of Respiration. 2019; 73: 112–24. (in Russian). doi: 10.36604/1998-5029-2019-73-112-124.
35. Markovsky A.V., Strambovskaya N.N., Tereshkov P.P. Moleculargenetic and serum markers of folate metabolism defciency in patients with proliferative breast disease and breast cancer. Siberian Journal of Oncology. 2017; 16(2): 50–5. (in Russian). doi: 10.21294/18144861-2017-16-2-50-55.
36. Markovsky A.V. Aminothiols and breast cancer. Transbaikal Medical Bulletin. 2020; 4: 162–70. (in Russian). doi: 10.52485/19986173_2020_4_162.
37. Markovsky A.V. The role of folate metabolism genes polymorphism and serum aminotiols in the formation of various histological types of breast cancer. Transbaikalian Medical Bulletin. 2019; 2: 40–7. (in Russian). doi: 10.52485/19986173_2019_2_40.
38. Markovsky A.V. Polymorphism of folate metabolism genes and malignant diseases. Transbaikal Medical Bulletin. 2018; 1: 164–71. (in Russian). doi: 10.52485/19986173_2018_1_164.
39. Farhood B., Najaf M., Salehi E., Hashemi Goradel N., Nashtaei M.S., Khanlarkhani N., Mortezaee K. Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. J Cell Biochem. 2019; 120(1): 71–6. doi: 10.1002/jcb.27594.
40. Daher B., Vučetić M., Pouysségur J. Cysteine Depletion, a Key Action to Challenge Cancer Cells to Ferroptotic Cell Death. Front Oncol. 2020; 10: 723. doi: 10.3389/fonc.2020.00723.
41. Hampton M.B., Vick K.A., Skoko J.J., Neumann C.A. Peroxiredoxin Involvement in the Initiation and Progression of Human Cancer. Antioxid Redox Signal. 2018; 28(7): 591–608. doi: 10.1089/ars.2017.7422.
42. Bratt D., Vaghela Kh., Patel S., Zaveri M. Role of oxidative stress in breast cancer. Pharmacy and pharmaceutical sciences. 2016; 5(11): 366–79.
43. Zenkov N.K., Menshchikova E.B., Tkachev V.O. Kep1/Nrf2/ARE redox sensitive signaling system as a pharmacological target. Biochemistry. 2013; 78(1): 27–47. (in Russian).
44. Yalcin S., Kurt O., Cifci A., Erel O. Is Thiol-Disulphide Homeostasis an Indicative Marker in Prediction of Metastasis in Lung Cancer Patients. Clin Lab. 2020; 66(8). doi: 10.7754/Clin.Lab.2020.200418.
45. Ergin M., Cendek B.D., Neselioglu S., Avsar A.F., Erel O. Dynamic thiol-disulfde homeostasis in hyperemesis gravidarum. J Perinatol. 2015; 35(10): 788–92. doi: 10.1038/jp.2015.81.
Review
For citations:
Markovsky A.V. Features of aminothiol metabolism and progression of breast cancer. Siberian journal of oncology. 2023;22(4):128-134. (In Russ.) https://doi.org/10.21294/1814-4861-2023-22-4-128-134