Аптамеры для диагностики и лечения глиальных опухолей человека
https://doi.org/10.21294/1814-4861-2023-22-5-105-117
Аннотация
Цель исследования – оценить возможность использования функциональных аналогов белковых антител – ДНК/РНК-аптамеров в диагностике, лечении и прогнозировании развития глиальных опухолей головного мозга человека.
Материал и методы. Поиск соответствующих источников литературы проводили в системах scopus, Web of science, pubmed, elibrary с включением публикаций с 2000 по 2023 г. В обзоре представлены данные из 60 статей.
Результаты. Проведен анализ литературы, посвященной классификации, диагностике и терапии глиобластом головного мозга и изучению возможности использования для in vivo диагностики и терапии этого заболевания аптамеров, которые представляют собой молекулярные распознающие элементы на основе ДНК/РНК-олигонуклеотидов, способных связываться с заданными молекулярными мишенями и различать в них даже отдельные функциональные группы. Приведен список из аптамеров к глиальным опухолям головного мозга человека и их молекулярных мишеней, которые могут быть использованы для диагностики и терапии глиобластомы, в том числе для визуализации опухоли методами ПЭТ/КТ, МРТ, плазмонного резонанса, флуоресцентной и конфокальной микроскопии и др. Данные литературы свидетельствуют о том, что с помощью ДНК/РНК-аптамеров можно осуществлять поиск циркулирующих опухолевых клеток в крови больных глиобластомой, адресную доставку к опухоли терапевтических препаратов и подавлять опухолевый рост.
Заключение. Глиобластома головного мозга – гетерогенная опухоль, состоящая из клеток, находящихся на разной стадии злокачественности и, соответственно, с различным набором онкогенов. Именно поэтому для терапии этого заболевания должна быть предложена мультитаргетная стратегия, которая включает в себя комбинированное подавление ангиогенеза, инвазии, метастазирования, пролиферации и выживаемости опухолевых клеток. Подходящими кандидатами для реализации мультитаргетной терапии глиобластомы головного мозга могут стать ДНК/РНК-аптамеры, подобранные к ключевым белкам, участвующим в онкогенной трансформации.
Ключевые слова
Об авторах
Т. Н. ЗамайРоссия
Замай Татьяна Николаевна - доктор биологических наук, доцент, ведущий научный сотрудник лаборатории биомолекулярных и медицинских технологий, профессор кафедры нормальной физиологии, ФГБОУ ВО «Красноярский ГМУ им. проф. В.Ф. Войно-Ясенецкого» Минздрава России; ведущий научный сотрудник лаборатории цифровых управляемых лекарств и тераностики, ФИЦ «Красноярский научный центр» СО РАН (г. Красноярск, Россия).
660022, Красноярск, ул. П. Железняка, 1; 660036, Красноярск, Академгородок, стр. 50
М. А. Дымова
Россия
Дымова Майя Александровна - старший научный сотрудник.
630090, Новосибирск, ул. Лаврентьева, 83
А. А. Народов
Россия
Народов Андрей Аркадьевич - доктор медицинских наук, профессор.
660022, Красноярск, ул. П. Железняка, 1
А. А. Кошманова
Россия
Кошманова Анастасия Андреевна, младший научный сотрудник.
660022, Красноярск, ул. П. Железняка, 1
Д. С. Грек
Россия
Грек Даниил Сергеевич – студент.
660022, Красноярск, ул. П. Железняка, 1
И. И. Воронковский
Россия
Воронковский Иван Игоревич – студент.
660022, Красноярск, ул. П. Железняка, 1
А. К. Горбушин
Россия
Горбушин Антон Константинович - аспирант.
660022, Красноярск, ул. П. Железняка, 1
А. С. Кичкайло
Россия
Кичкайло Анна Сергеевна, доктор биологических наук, руководитель лаборатории биомолекулярных и медицинских технологий, ФГБОУ ВО «Красноярский ГМУ им. В.Ф. Войно-Ясенецкого»; заведующая лабораторией цифровых управляемых лекарств и тераностики, ФИЦ «Красноярский научный центр» СО РАН.
660022, Красноярск, ул. П. Железняка, 1; 660036, Красноярск, Академгородок, стр. 50
Е. В. Кулигина
Россия
Кулигина Елена Владимировна - старший научный сотрудник.
630090, Новосибирск, ул. Лаврентьева, 83
В. А. Рихтер
Россия
Рихтер Владимир Александрович - заведующий лабораторией.
630090, Новосибирск, ул. Лаврентьева, 83
Р. А. Зуков
Россия
Зуков Руслан Александрович - доктор медицинских наук, профессор, заведующий кафедрой онкологии и лучевой терапии с курсом ПО.
660022, Красноярск, ул. П. Железняка, 1
Список литературы
1. Park Y.W., Vollmuth P., Foltyn-Dumitru M., Sahm F., Ahn S.S., Chang J.H., Kim S.H. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 1-Key Points of the Fifth Edition and Summary of Imaging Findings on Adult-Type Diffuse Gliomas. J Magn Reson Imaging. 2023; 58(3): 677–89. doi: 10.1002/jmri.28743.
2. Сергеев Н.И., Ребрикова В.А., Котляров П.М., Солодкий В.А. Магнитно-резонансная томография с перфузионной визуализацией в диагностике глиобластом головного мозга (Обзор литературы). Вестник Российского научного центра рентгенологии. 2021; 2(1): 45–59.
3. Aquino D., Di Stefano A.L., Scotti A., Cuppini L., Anghileri E., Finocchiaro G., Bruzzone M.G., Eoli M. Parametric response maps of perfusion MRI may identify recurrent glioblastomas responsive to bevacizumab and irinotecan. PLoS One. 2014; 9(3). doi: 10.1371/journal.pone.0090535.
4. Розуменко В.Д. Опухоли головного мозга: современное состояние проблемы [Internet]. Алушта: III съезд нейрохирургов Украины, 2003. URL: https://health-ua.com/article/18896-opuholi-golovnogomozga-sovremennoe-sostoyanie-problemy. (in Russian).
5. Brown T.J., Brennan M.C., Li M., Church E.W., Brandmeir N.J., Rakszawski K.L., Patel A.S., Rizk E.B., Suki D., Sawaya R., Glantz M. Association of the Extent of Resection With Survival in Glioblastoma: A Systematic Review and Meta-analysis. JAMA Oncol. 2016; 2(11): 1460–9. doi: 10.1001/jamaoncol.2016.1373.
6. Yung W.K., Albright R.E., Olson J., Fredericks R., Fink K., Prados M.D., Brada M., Spence A., Hohl R.J., Shapiro W., Glantz M., Greenberg H., Selker R.G., Vick N.A., Rampling R., Friedman H., Phillips P., Bruner J., Yue N., Osoba D., Zaknoen S., Levin V.A. A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer. 2000; 83(5): 588–93. doi: 10.1054/bjoc.2000.1316.
7. Jacobson O., Yan X., Niu G., Weiss I.D., Ma Y., Szajek L.P., Shen B., Kiesewetter D.O., Chen X. PET Imaging of Tenascin-C with a Radiolabeled Single-Stranded DNA Aptamer. J Nucl Med. 2015; 56(4): 616–621. doi: 10.2967/jnumed.114.149484.
8. Gu M.J., Li K.F., Zhang L.X., Wang H., Liu L.S., Zheng Z.Z., Han N.Y., Yang Z.J., Fan T.Y. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging. Int J Nanomedicine. 2015; 10: 5187–204. doi: 10.2147/IJN.S84351.
9. Hicke B.J., Stephens A.W., Gould T., Chang Y.F., Lynott C.K., Heil J., Borkowsk, S., Hilger C.S., Cook G., Warren S., Schmidt P.G. Tumor targeting by an aptamer. J Nucl Med. 2006; 47(4): 668–78.
10. Amero P., Esposito C.L., Rienzo A., Moscato F., Catuogno S., de Franciscis V. Identification of an Interfering Ligand Aptamer for EphB2/3 Receptors. Nucleic Acid Ther. 2016; 26(2): 102–10. doi: 10.1089/nat.2015.0580.
11. Affinito A., Quintavalle C., Esposito C.L., Roscigno G., Giordano C., Nuzzo S., Ricci-Vitiani L., Scognamiglio I., Minic Z., Pallini R, Pallini R., Berezovski M.V., de Francisis V., Condorelli G. Targeting Ephrin Receptor Tyrosine Kinase A2 with a Selective Aptamer for Glioblastoma Stem Cells. Mol Ther Nucleic Acids. 2020; 20: 176–85. doi: 10.1016/j.omtn.2020.02.005.
12. Li N., Nguyen H.H., Byrom M., Ellington A.D. Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS One. 2011; 6(6). doi: 10.1371/journal.pone.0020299.
13. Hasan M.R., Hassan N., Khan R., Kim Y.T., Iqbal S.M. Classification of cancer cells using computational analysis of dynamic morphology. Comput Methods Programs Biomed. 2018; 156: 105–12. doi: 10.1016/j.cmpb.2017.12.003.
14. Camorani S., Crescenzi E., Colecchia D., Carpentieri A., Amoresano A., Fedele M., Chiariello M., Cerchia L. Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells. Oncotarget. 2015; 6(35): 37570–87. doi: 10.18632/oncotarget.6066.
15. Wan Y., Tan J., Asghar W., Kim Y.T., Liu Y., Iqbal S.M. Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices. J Phys Chem B. 2011; 115(47): 13891–6. doi: 10.1021/jp205511m.
16. Wang T., Philippovich S., Mao J., Veedu R.N. Efficient Epidermal Growth Factor Receptor Targeting Oligonucleotide as a Potential Molecule for Targeted Cancer Therapy. Int J Mol Sci. 2019; 20(19): 4700. doi: 10.3390/ijms20194700.
17. Wu X., Liang H., Tan Y., Yuan C., Li S., Li X., Li G., Shi Y., Zhang X. Cell-SELEX Aptamer for Highly Specific Radionuclide Molecular Imaging of Glioblastoma In Vivo. PLoS One. 2014; 9(6). doi:10.1371/journal.pone.0090752.
18. Tang J., Huang N., Zhang X., Zhou T., Tan Y., Pi J., Pi L., Cheng S., Zheng H., Cheng Y. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine 2017; 12: 3899–911. doi:10.2147/IJN.S133166.
19. Mahmood M.A.I., Hasan M.R., Khan U.J.M., Allen P.B., Kim Y., Ellington A.D., Iqbal S.M. One-step tumor detection from dynamic morphology tracking on aptamer-grafted surfaces. Technology (Singap World Sci). 2015; 3(4): 194–200. doi: 10.1142/S2339547815500089.
20. Peng L., Liang Y., Zhong X., Liang Z., Tian Y., Li S., Liang J., Wang R., Zhong Y., Shi Y., Zhang X. Aptamer-Conjugated Gold Nanoparticles Targeting Epidermal Growth Factor Receptor Variant III for the Treatment of Glioblastoma. Int J Nanomedicine. 2020; 15: 1363–72. doi: 10.2147/IJN.S238206.
21. Shi S., Fu W., Lin S., Tian T., Li S., Shao X., Zhang Y., Zhang T., Tang Z., Zhou Y.; Lin Y., Cai X. Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier. Nanomedicine Nanotechnology, Biol. Med. 2019; 21. doi: 10.1016/j.nano.2019.102061.
22. Yoon S., Wu X., Armstrong B., Habib N., Rossi J.J. An RNA Aptamer Targeting the Receptor Tyrosine Kinase PDGFRα Induces Antitumor Effects through STAT3 and p53 in Glioblastoma. Mol Ther Nucleic Acids. 2019; 14: 131–41. doi: 10.1016/j.omtn.2018.11.012.
23. Kim Y., Wu Q., Hamerlik P., Hitomi M., Sloan A.E., Barnett G.H., Weil R.J., Leahy P., Hjelmeland A.B., Rich J.N. Aptamer Identification of Brain Tumor–Initiating Cells. Cancer Res. 2013; 73: 4923–36. doi: 10.1158/0008-5472.CAN-12-4556.
24. McNamara J.O., Kolonias D., Pastor F., Mittler R.S., Chen L., Giangrande P.H., Sullenger B., Gilboa E. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest. 2008; 118(1): 376–86. doi: 10.1172/JCI33365.
25. Verhoeff J.J.C., Stalpers L.J.A., Claes A., Hovinga K.E., Musters G.D., Vandertop P.W., Richel D.J., Leenders W.P.J., van Furth W.R. Tumour control by whole brain irradiation of anti-VEGF-treated mice bearing intracerebral glioma. Eur J Cancer. 2009; 45(17): 3074–80. doi: 10.1016/j.ejca.2009.08.004.
26. Luo Z., Yan Z., Jin K., Pang Q., Jiang T., Lu H., Liu X., Pang Z., Yu L., Jiang X. Precise glioblastoma targeting by AS1411 aptamer-functionalized poly (l-γ-glutamylglutamine)–paclitaxel nanoconjugates. J Colloid Interface Sci. 2017; 490: 783–96. doi:10.1016/j.jcis.2016.12.004.
27. Alibolandi M., Abnous K., Ramezani M., Hosseinkhani H., Hadizadeh F. Synthesis of AS1411-Aptamer-Conjugated CdTe Quantum Dots with High Fluorescence Strength for Probe Labeling Tumor Cells. J Fluoresc. 2014; 24(5): 1519–29. doi: 10.1007/s10895-014-1437-5.
28. Blank M., Weinschenk T., Priemer M., Schluesener H. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem. 2001; 276(19): 16464–8. doi: 10.1074/jbc.M100347200.
29. Aptekar S., Arora M., Lawrence C.L., Lea R.W., Ashton K., Dawson T., Alder J.E., Shaw L. Selective Targeting to Glioma with Nucleic Acid Aptamers. PLoS One. 2015; 10(8). doi: 10.1371/journal.pone.0134957.
30. Oguro A., Ohtsu T., Svitkin Y.V., Sonenberg N., Nakamura Y. RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis. RNA. 2003; 9(4): 394–407. doi: 10.1261/rna.2161303.
31. Fechter P., Cruz Da Silva E., Mercier M.C., Noulet F., EtienneSeloum N., Guenot D., Lehmann M., Vauchelles R., Martin S., LelongRebel I.; Ray A.-M., Seguin C., Dontenwill S., Choulier L. RNA Aptamers Targeting Integrin α5β1 as Probes for Cyto- and Histofluorescence in Glioblastoma. Mol Ther Nucleic Acids. 2019; 17: 63–77. doi: 10.1016/j.omtn.2019.05.006.
32. Kichkailo A.S., Narodov A.A., Komarova, M.A., Zamay T.N., Zamay G.S., Kolovskaya O.S., Erakhtin E.E., Glazyrin Y.E., Veprintsev D.V., Moryachkov R.V., Zabluda V.N., Shchugoreva I., Artyushenko P., Mironov V.A., Morozov D.I., KhorzhevskII V.A., Gorbushin A.V., Koshmanova A.A., Nikolaeva E.D., Grinev I.P., VoronkovskII I.I., Grek D.S., Belugin K.V., Volzhentsev A.A., Badmaev O.N., Luzan N.A., Lukyanenko K.A., Peters G., Lapin I.N., Kirichenko A..K., Konarev P.V., Morozov E.V., Mironov G.G., Gargaun A., Muharemagic D., Zamay S.S., Kochkina E.V., Dymova M.A., Smolyarova T.E., Sokolov A.E., Modestov A.A., Tokarev N.A., Shepelevich N.V., Ozerskaya A.V., Chanchikova N.G., Krat A.V., Zukov R.A., Bakhtina V.I., Shnyakin P.G., Shesternea P.A., Svetlichnyi V.A., Petrova M.M., Artyukhov I.P., Tomilin F.N., Berezovski M.V. Development of DNA aptamers for visualization of glial brain tumors and detection of circulating tumor cells. Mol Ther Nucleic Acids 2023; 32: 267–88. doi: 10.1016/j.omtn.2023.03.015.
33. Larcher L.M., Wang T., Veedu R.N. Development of novel antimirzymes for targeted inhibition of miR-21 expression in solid cancer cells. Molecules. 2019; 24(13). doi: 10.3390/molecules24132489.
34. Fu W., You C., Ma L., Li H., Ju Y., Guo X., Shi S., Zhang T., Zhou R., Lin Y. Enhanced Efficacy of Temozolomide Loaded by a Tetrahedral Framework DNA Nanoparticle in the Therapy for Glioblastoma. ACS Appl Mater Interfaces. 2019; 11(43): 39525–33. doi: 10.1021/acsami.9b13829.
35. Shigdar S., Qiao L., Zhou S.-F., Xiang D., Wang T., Li Y., Lim L.Y., Kong L., Li L., Duan W. RNA aptamers targeting cancer stem cell marker CD133. Cancer Lett. 2013; 330(1): 84–95. doi: 10.1016/j.canlet.2012.11.0320.
36. Affinito A., Quintavalle C., Esposito, C.L., Roscigno G., Vilardo C., Nuzzo S., Ricci-Vitiani L., De Luca G., Pallini R., Kichkailo A.S., Lapin I.N., de Franciscis V., Condorelli G. The Discovery of RNA Aptamers that Selectively Bind Glioblastoma Stem Cells. Mol Ther Nucleic Acids. 2019; 18: 99–109. doi: 10.1016/j.omtn.2019.08.015.
37. Wei J., Marisetty A., Schrand B., Gabrusiewicz K., Hashimoto Y., Ott M., Grami Z., Kong L.-Y., Ling X., Caruso H., Zhou S., Wang A., Fuller G.N., Huse J., Giboa E., Kang N., Huang X., Verhaak R., Li S., Heimberger A.B. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. J Clin Invest. 2018; 129(1): 137–49. doi: 10.1172/JCI121266.
38. Bayrac A.T., Sefah K., Parekh P., Bayrac C., Gulbakan B., Oktem H.A., Tan W. In Vitro Selection of DNA Aptamers to Glioblastoma Multiforme. ACS Chem. Neurosci. 2011; 2(3): 175–81. doi: 10.1021/cn100114k.
39. Wu Q.m Lin N., Tian T., Zhu Z., Wu L., Wang H., Wang D., Kang D., Tian R., Yang C. Evolution of Nucleic Acid Aptamers Capable of Specifically Targeting Glioma Stem Cells via Cell-SELEX. Anal Chem. 2019; 91(13): 8070–7. doi: 10.1021/acs.analchem.8b05941.
40. Wu Q., Wang Y., Wang H., Wu L., Zhang H., Song Y., Zhu Z., Kang D., Yang C. DNA aptamers from whole-cell SELEX as new diagnostic agents against glioblastoma multiforme cells. Analyst. 2018; 143(10): 2267–75. doi: 10.1039/c8an00271a.
41. Gao H., Qian J., Yang Z., Pang Z., Xi Z., Cao S., Wang Y., Pan S., Zhang S., Wang W., Jiang X., Zhang O. Whole-cell SELEX aptamerfunctionalised poly(ethyleneglycol)-poly(ε-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials. 2012; 33(26): 6264–72. doi: 10.1016/j.biomaterials.2012.05.020.
42. Bayraç A.T., Akça O.E., Eyidoğan F.İ., Öktem H.A. Target-specific delivery of doxorubicin to human glioblastoma cell line via ssDNA aptamer. J Biosci. 2018; 43: 97–104. doi:10.1007/s12038-018-9733-x.
43. Kang D., Wang J., Zhang W., Song Y., Li X., Zou Y., Zhu M., Zhu Z., Chen F., Yang C.J. Selection of DNA Aptamers against Glioblastoma Cells with High Affinity and Specificity. PLoS One. 2012; 7(10). doi: 10.1371/journal.pone.0042731.
44. Miratashi Yazd, S.A., Bakhshi N., Nazar E., Moradi Tabriz H., Gorji R. Epidermal growth factor receptor (EGFR) expression in high grade glioma and relationship with histopathologic findings, a cross sectional study. Int J Surg Open. 2022; 46. doi:10.1016/j.ijso.2022.100527.
45. Hatanpaa K.J., Burma S., Zhao D. Habib A.A. Epidermal Growth Factor Receptor in Glioma: Signal Transduction, Neuropathology, Imaging, and Radioresistance. Neoplasia. 2010; 12(9): 675–84. doi: 10.1593/neo.10688.
46. Wan Y., Liu Y., Allen P.B., Asghar W., Mahmood M.A.I., Tan J., Duhon H., Kim Y., Ellington A.D., Iqbal S.M. Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array. Lab Chip. 2012; 12(22): 4693–701. doi:10.1039/c2lc21251j.
47. Wan Y., Mahmood M.A.I., Li N., Allen P.B., Kim Y., Bachoo R., Ellington A.D., Iqbal S.M. Nanotextured substrates with immobilized aptamers for cancer cell isolation and cytology. Cancer. 2012; 118(4): 1145–54. doi:10.1002/cncr.26349.
48. Wan Y., Tamuly D., Allen P.B., Kim Y.T., Bachoo R., Ellington A.D., Iqbal S.M. Proliferation and migration of tumor cells in tapered channels. Biomed Microdevices. 2013; 15(4): 635–43. doi: 10.1007/s10544-0129721-0.
49. Wang L., Zheng, Q., Zyang Q., Xu H., Tong J., Zhu C., Wan Y. Detection of single tumor cell resistance with aptamer biochip. Oncol Lett. 2012; 4(5): 935–40. doi: 10.3892/ol.2012.890.
50. Wan Y., Kim Y., Li N., Cho S.K., Bachoo R., Ellington A.D., Iqbal S.M. Surface-Immobilized Aptamers for Cancer Cell Isolation and Microscopic Cytology. Cancer Res. 2010; 70(22): 9371–80. doi: 10.1158/0008-5472.CAN-10-0568.
51. Nakada M., Hayashi Y., Hamada J.I. Role of Eph/ephrin tyrosine kinase in malignant glioma. Neuro Oncol. 2011; 13(11): 1163–70. doi: 10.1093/neuonc/nor102.
52. Корчагина А.А., Шеин С.А., Гурина О.И., Чехонин В.П. Роль рецепторов VEGFR в неопластическом ангиогенезе и перспективы терапии опухолей мозга. Вестник РАМН. 2013; 68(11): 104–14. doi: 10.15690/vramn.v68i11.851.
53. Yalcin F., Dzaye O., Xia S. Tenascin-C Function in Glioma: Immunomodulation and Beyond. Adv Exp Med Biol. 2020; 1272: 149–72. doi: 10.1007/978-3-030-48457-6_9.
54. Zhang Q., Xu B., Hu F., Chen X., Liu X., Zhang Q., Zuo Y. Tenascin C Promotes Glioma Cell Malignant Behavior and Inhibits Chemosensitivity to Paclitaxel via Activation of the PI3K/AKT Signaling Pathway. J Mol Neurosci. 2021; 71(8): 1636–47. doi: 10.1007/s12031-021-01832-8.
55. Angel I., Pilo Kerman,O., Rousso-Noori L., Friedmann-Morvinski D. Tenascin C promotes cancer cell plasticity in mesenchymal glioblastoma. Oncogene. 2020; 39(46): 6990–7004. doi: 10.1038/s41388-02001506-6.
56. Chen H., Zheng X., Di B., Wang D., Zhang Y., Xia H., Mao Q. Aptamer modification improves the adenoviral transduction of malignant glioma cells. J Biotechnol. 2013; 168(4): 362–6. doi: 10.1016/j.jbiotec.2013.10.024.
57. Ma H., Gao Z., Yu P., Shen S., Liu Y., Xu B. A dual functional fluorescent probe for glioma imaging mediated by Blood-brain barrier penetration and glioma cell targeting. Biochem Biophys Res Commun. 2014; 449(1): 44–8. doi: 10.1016/j.bbrc.2014.04.148.
58. Чулкова С.В., Шолохова Е.Н., Поддубная И.В., Стилиди И.С., Тупицын Н.Н. Анализ взаимосвязи трансферринового рецептора 1 (TfR1) с клинико-морфологическими и иммунофенотипическими характеристиками рака молочной железы. Современная онкология. 2022; 24(3): 355–60. doi: 10.26442/18151434 .2022.3.201821.
59. Ahmed S.I., Javed G., Laghari A.A., Bareeqa S.B., Farrukh S., Zahid S., Samar S.S., Aziz K. CD133 Expression in Glioblastoma Multiforme: A Literature Review. Cureus. 2018; 10(10). doi: 10.7759/cureus.3439.
60. Gasser M., Waaga-Gasser A.M. Therapeutic Antibodies in Cancer Therapy. Adv Exp Med Biol. 2016. doi: 10.1007/978-3-319-32805-8_6.
Рецензия
Для цитирования:
Замай Т.Н., Дымова М.А., Народов А.А., Кошманова А.А., Грек Д.С., Воронковский И.И., Горбушин А.К., Кичкайло А.С., Кулигина Е.В., Рихтер В.А., Зуков Р.А. Аптамеры для диагностики и лечения глиальных опухолей человека. Сибирский онкологический журнал. 2023;22(5):105-117. https://doi.org/10.21294/1814-4861-2023-22-5-105-117
For citation:
Zamay T.N., Dymova M.A., Narodov A.A., Koshmanova A.A., Grek D.S., Voronkovskii I.I., Gorbushin A.K., Kichkailo A.S., Kuligina E.V., Richter V.A., Zukov R.А. Aptamers for the diagnosis and treatment of human glial tumors. Siberian journal of oncology. 2023;22(5):105-117. (In Russ.) https://doi.org/10.21294/1814-4861-2023-22-5-105-117