Blood mononuclear cell molecular landscape associated with tumor progression in triple-negative breast cancer
https://doi.org/10.21294/1814-4861-2023-22-5-197-204
Abstract
Introduction. triple negative breast cancer is an aggressive clinical phenotype characterized by poor prognosis. immune system plays an important role in the development, treatment response, and progression of solid tumor. The search for immune-related markers associated with the prediction of treatment efficacy and disease prognosis, and based on the use of high-resolution molecular techniques, is a promising area of research, the results of which can be translated into clinical practice. Case description. The molecular profile of blood mononuclear cells in a 48-year-old female patient with histologically proven triple negative breast cancer (estrogen Receptor – 0; progesteron Receptor – 0; Her2/neu – 0; gata-3 – 0, androgen Receptor – 0 and Ki67 – 70 %) was described. The patient did not response to neoadjuvant chemotherapy with 4 cycles of paclitaxel + carboplatin followed by 2 cycles of adriamycin + cyclophosphamide. The patient underwent surgery. disease progression (pelvic bone metastases) occurred 2 months after surgery. The features of blood lymphocytes and monocytes associated with a lack of response to neoadjuvant chemotherapy and disease progression were described.
Conclusion. This clinical case demonstrates that sequencing of peripheral blood mononuclear cells can be used as a method for identifying predictive markers of therapy efficacy and developing personalized treatments for patients with triple negative breast cancer.
Keywords
About the Authors
M. R. PatyshevaRussian Federation
Marina R. Patysheva - Junior Researcher of the Laboratory of Cancer Progression Biology, Сancer Research Institute, Tomsk NRMC, RAS; Junior Researcher of the Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University (Tomsk, Russia). Researcher ID (WOS): Q-9364-2017. Author ID (Scopus): 57200569624.
5, Kooperativny st., Tomsk, 634009; 36, Lenina st., Tomsk, 634050
A. A. Frolova
Russian Federation
Anastasia A. Frolova, Junior Researcher of the Laboratory of Immunology and Molecular Oncology, Сancer Research Institute, Tomsk NRMC, RAS; Laboratory Assistant of the Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk SU. Researcher ID (WOS): AAF-5212-2021. Author ID (Scopus): 57218917496
5, Kooperativny st., Tomsk, 634009; 36, Lenina st., Tomsk, 634050
O. D. Bragina
Russian Federation
Olga D. Bragina - MD, DSc, Leader Researcher of the Nuclear Medicine Department, Сancer Research Institute, Tomsk NRMC, RAS; Senior Researcher, Research Center of the National Research Tomsk PU. Researcher ID (WOS): E-9732-2017. Author ID (Scopus): 57190936256.
5, Kooperativny st., Tomsk, 634009; 2, Building 33, Lenin ave., Tomsk, 634028
A. A. Fedorov
Russian Federation
Anton A. Fedorov - Junior Researcher of the Laboratory of Cancer Progression Biology, Сancer Research institute.
5, Kooperativny st., Tomsk, 634009
M. A. Vostrikova
Russian Federation
Maria А. Vostrikova - Junior Researcher of the Department of General Oncology, Cancer Research Institute.
5, Kooperativny st., Tomsk, 634009
E. Yu. Garbukov
Russian Federation
Evgeniy Yu. Garbukov - MD, PhD, Senior Researcher of the Department of General Oncology, Cancer Research Institute, Tomsk NRMC, RAS. Researcher ID (WOS): С-8299-2012. Author ID (Scopus): 6504255124.
5, Kooperativny st., Tomsk, 634009
P. S. Iamshchikov
Russian Federation
Pavel S. Iamshikov, Bioinformatician of the Laboratory of Cancer Progression Biology, Сancer Research institute, Tomsk NRMC, RAS; Laboratory Assistant of the Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk SU. Researcher ID (WOS): AAE-3883-2022. Author ID (Scopus): 57468957700.
5, Kooperativny st., Tomsk, 634009; 36, Lenina st., Tomsk, 634050
M. Vashisth
Russian Federation
Mrinal Vashisth - Consultant Bioinformatician of the Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk NRMC, RAS; graduate student of the Department of Psychology, National Research Tomsk SU.
5, Kooperativny st., Tomsk, 634009; 36, Lenina st., Tomsk, 634050
N. V. Cherdyntseva
Russian Federation
Nadezhda V. Cherdyntseva - DSc, Professor, Corresponding Member of Russian Academy of Sciences, Head of the Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk NRMC, RAS; Senior Researcher of the Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk SU. Researcher ID (WOS): С-7943-2012. Author ID (Scopus): 6603911744.
5, Kooperativny st., Tomsk, 634009; 36, Lenina st., Tomsk, 634050
T. S. Gerashchenko
Russian Federation
Tatiana S. Gerashchenko, Researcher of the Laboratory of Cancer Progression Biology, Сancer Research institute, Tomsk NRMC, RAS. Researcher ID (WOS):А-7011-2014 Author ID (Scopus): 55948412900.
5, Kooperativny st., Tomsk, 634009
References
1. García-Teijido P., Cabal M.L., Fernández I.P., Pérez Y.F. TumorInfiltrating Lymphocytes in Triple Negative Breast Cancer: The Future of Immune Targeting. Clin Med Insights Oncol. 2016; 10(S1): 31–9. doi: 10.4137/CMO.S34540.
2. Zarotti C., Papassotiropoulos B., Elfgen C., Dedes K., Vorburger D., Pestalozzi B., Trojan A., Varga Z. Biomarker dynamics and prognosis in breast cancer after neoadjuvant chemotherapy. Scientific reports. 2022; 12(1): 91. doi: 10.1038/s41598-021-04032-x.
3. Loi S., Sirtaine N., Piette F., Salgado R., Viale G., Van Eenoo F., Rouas G., Francis P., Crown J.P., Hitre E., de Azambuja E., Quinaux E., Di Leo A., Michiels S., Piccart M.J., Sotiriou C. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 0298. J Clin Oncol. 2013; 31(7): 860–7. doi: 10.1200/JCO.2011.41.0902.
4. Lin G.N., Peng J.W., Liu D.Y., Xiao J.J., Chen Y.Q., Chen X.Q. Increased lymphocyte to monocyte ratio is associated with better prognosis in patients with newly diagnosed metastatic nasopharyngeal carcinoma receiving chemotherapy. Tumour Biol. 2014; 35(11): 10849–54. doi: 10.1007/s13277-014-2362-6.
5. Peng Y., Chen R., Qu F., Ye Y., Fu Y., Tang Z., Wang Y., Zong B., Yu H., Luo F., Liu S. Low pretreatment lymphocyte/monocyte ratio is associated with the better efficacy of neoadjuvant chemotherapy in breast cancer patients. Cancer Biol Ther. 2020; 21(2): 189–96. doi: 10.1080/15384047.2019.1680057.
6. Lu C., Zhou L., Ouyang J., Yang H. Prognostic value of lymphocyteto-monocyte ratio in ovarian cancer: A meta-analysis. Medicine (Baltimore). 2019; 98(24). doi: 10.1097/MD.0000000000015876.
7. Geiger R., Duhen T., Lanzavecchia A., Sallusto F. Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J Exp Med. 2009; 206(7): 1525–34. doi: 10.1084/jem.20090504.
8. Nausch N., Bourke C.D., Appleby L.J., Rujeni N., Lantz O., Trottein F., Midzi N., Mduluza T., Mutapi F. Proportions of CD4+ memory T cells are altered in individuals chronically infected with Schistosoma haematobium. Sci Rep. 2012; 2: 472. doi: 10.1038/srep00472.
9. Duggleby R., Danby R.D., Madrigal J.A., Saudemont A. Clinical Grade Regulatory CD4+ T Cells (Tregs): Moving Toward Cellular-Based Immunomodulatory Therapies. Front Immunol. 2018; 9: 252. doi: 10.3389/fimmu.2018.00252.
10. Hashimoto K., Kouno T., Ikawa T., Hayatsu N., Miyajima Y., Yabukami H., Terooatea T., Sasaki T., Suzuki T., Valentine M., Pascarella G., Okazaki Y., Suzuki H., Shin J.W., Minoda A., Taniuchi I., Okano H., Arai Y., Hirose N., Carninci P. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad Sci USA. 2019; 116(48): 24242–51. doi: 10.1073/pnas.1907883116.
11. Pulko V., Davies J.S., Martinez C., Lanteri M.C., Busch M.P., Diamond M.S., Knox K., Bush E.C., Sims P.A., Sinari S., Billheimer D., Haddad E.K., Murray K.O., Wertheimer A.M., Nikolich-Žugich J. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat Immunol. 2016; 17(8): 966–75. doi: 10.1038/ni.3483.
12. Kleiveland C.R. Peripheral Blood Mononuclear Cells. In: Verhoeckx K., Cotter P., López-Expósito I., Kleiveland C., Lea T., Mackie A., Requena T., Swiatecka D., Wichers H., editors. The Impact of Food Bioactives on Health: in vitro and ex vivo models [Internet]. Cham (CH): Springer; 2015. Chapter 15.
13. Patysheva M.R., Stakheeva M.N., Larionova I.V., Tarabanovskaya N.A., Grigorieva E.S., Slonimskaya E.M., Kzhyshkowska J.G., Cherdyntseva N.V. Monocytes and cancer: promising role as a diagnostic marker and application in therapy. Bulletin of Siberian Medicine. 2019; 18(1): 60–75. (in Russian). doi: 10.20538/1682-0363-2019-1-76-83.
14. Kohli K., Pillarisetty V.G., Kim T.S. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 2022; 29(1): 10–21. doi: 10.1038/s41417-021-00303-x.
15. Aldinucci D., Borghese C., Casagrande N. The CCL5/CCR5 Axis in Cancer Progression. Cancers (Basel). 2020; 12(7): 1765. doi: 10.3390/ cancers12071765.
16. Das P., Pal S., Oldfield C.M., Thillai K., Bala S., Carnevale K.A., Cathcart M.K., Bhattacharjee A. A PKCβ-LYN-PYK2 Signaling Axis Is Critical for MCP-1-Dependent Migration and Adhesion of Monocytes. J Immunol. 2021; 206(1): 181–92. doi: 10.4049/jimmunol.1900706.
17. Larionova I., Kazakova E., Gerashchenko T., Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel). 2021; 13(13): 3253. doi: 10.3390/cancers13133253.
Review
For citations:
Patysheva M.R., Frolova A.A., Bragina O.D., Fedorov A.A., Vostrikova M.A., Garbukov E.Yu., Iamshchikov P.S., Vashisth M., Cherdyntseva N.V., Gerashchenko T.S. Blood mononuclear cell molecular landscape associated with tumor progression in triple-negative breast cancer. Siberian journal of oncology. 2023;22(5):197-204. https://doi.org/10.21294/1814-4861-2023-22-5-197-204