Preview

Siberian journal of oncology

Advanced search

KRAS-mutated non-small cell lung cancer: new therapy strategies

https://doi.org/10.21294/1814-4861-2024-23-2-72-81

Abstract

Lung cancer remains one of the most dangerous and most common cancers, requiring constant improvement of diagnostic and treatment methods. The genetic heterogeneity of lung cancer forces us to search for new therapeutic targets in an attempt to achieve greater effectiveness for certain groups of patients. The purpose of the study was to update current knowledge about lung adenocarcinoma with a mutation in the KRAS gene, to consider new opportunities for personalized treatment of KRAS-mutated NSCLC and to form an image of a Russian patient who is potentially indicated for targeted therapy. Material and methods. A search of available literature sources published in the Pubmed, Cochrane Library, Elibrary database was carried out, publications covering the period from 2008 to 2023 were included. Results. The article discussed molecular genetic testing, including NGS next generation sequencing, and its role in determining the presence of KRAS gene mutations in patients with lung cancer. the effectiveness of targeted drugs, such as Sotorasib and Adagrasib was also discussed. The mechanism of action is aimed at suppressing the activity of the mutant KRAS G12C protein, which can significantly improve patient survival prognosis. We obtained data on the results of testing 935 patients with non-squamous non-small cell lung cancer from various medical centers in Russia. The KRAS gene mutation was identified in 160 (17.1 %) patients, of whom 96 (10.3 %) had KRAS G12C variant. The KRAS mutation was determined by PCR in 44 patients and by NGS (including on the FoundationOne platform) in 111 patients. Clinical characteristics, such as gender, age, smoking status, PD-L1 expression level, presence of co-mutations (TP53, STK11, KEAP1, were largely similar between patients from real-world clinical practice and patients included in the CodeBreak100 study. Conclusion. The research results confirm the high effectiveness of Sotorasib and Adagrasib for patients with the KRAS G12C mutation and open up new prospects in the treatment of lung cancer. The clinical data obtained from Russian patients demonstrate consistency with the patient profile from registration studies of these drugs. This once again demonstrates the need to expand the range of molecular genetic testing for timely identification of this group of patients and prescribing the most effective treatment for them.

About the Authors

K. K. Laktionov
N.N. Blokhin National Medical Research Center of Oncology of The Ministry of Health of Russia; N.I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia
Russian Federation

Konstantin K. Laktionov - MD, DSc, First Deputy Director, Head of Chemotherapy Department No. 3, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia; Professor, Department of Oncology and Radiation Therapy, Faculty of Medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia.

23, Kashirskoye Shosse, Moscow, 115478; 1, Ostrovityanova St., Moscow, 117997



K. A. Sarantseva
N.N. Blokhin National Medical Research Center of Oncology of The Ministry of Health of Russia; N.I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia
Russian Federation

Ksenia A. Sarantseva - MD, PhD, Researcher, Chemotherapy Department No. 3, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia; Assistant Professor, Department of Oncology and Radiation Therapy, Faculty of Medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia.

23, Kashirskoye Shosse, Moscow, 115478; 1, Ostrovityanova St., Moscow, 117997



L. A. Nelyubina
N.N. Blokhin National Medical Research Center of Oncology of The Ministry of Health of Russia
Russian Federation

Lydia A. Nelyubina - MD, PhD, Researcher, Chemotherapy Department No. 3, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia.

23, Kashirskoye shosse, moscow, 115478



S. V. Gamayunov
Nizhny Novgorod Regional Clinical Oncology Center
Russian Federation

Sergey V. Gamayunov - MD, DSc, Chief Physician, Nizhny Novgorod Regional Clinical Oncology Center.

11/1, Delovaya St., Nizhny Novgorod, 603163



E. A. Kolesnikova
Nizhny Novgorod Regional Clinical Oncology Center
Russian Federation

Elena A. Kolesnikova - PhD, Head of Molecular Genetics Laboratories, Joint Pathoanatomical Department, Nizhny Novgorod Regional Clinical Oncology Center.

11/1, Delovaya St., Nizhny Novgorod, 603163



M. G. Gordiev
Diagnostic Center (Center for Laboratory Research) of the Moscow Department of Health
Russian Federation

Marat G. Gordiev - MD, Diagnostic Center (Center for Laboratory Research) of the Moscow Department of Health.

49, build. 1, Orekhovy Blvd, Moscow, 115580



References

1. Prior I.A., Hood F.E., Hartley J.L. The Frequency of Ras Mutations in Cancer. Cancer Res. 2020; 80(14): 2969–74. doi: 10.1158/0008-5472.CAN-19-3682.

2. BiernackaA.,Tsongalis P.D.,PetersonJ.D.,deAbreu F.B.,BlackC.C., Gutmann E.J., Liu X., Tafe L.J., Amos C.I., Tsongalis G.J. The potential utility of re-mining results of somatic mutation testing: KRAS status in lung adenocarcinoma. Cancer Genet. 2016; 209(5): 195–8. doi: 10.1016/j.cancergen.2016.03.001.

3. Ettinger D.S., Wood D.E., Aisner D.L., Akerley W., Bauman J.R., Bharat A., Bruno D.S., Chang J.Y., Chirieac L.R., D’Amico T.A., DeCamp M., Dilling T.J., Dowell J., Gettinger S., Grotz T.E., Gubens M.A., Hegde A., Lackner R.P., Lanuti M., Lin J., Loo B.W., Lovly C.M., Maldonado F., Massarelli E., Morgensztern D., Ng T., Otterson G.A., Pacheco J.M., Patel S.P., Riely G.J., Riess J., Schild S.E., Shapiro T.A., Singh A.P., Stevenson J., Tam A., Tanvetyanon T., Yanagawa J., Yang S.C., Yau E., Gregory K., Hughes M. Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022; 20(5):497–530. doi: 10.6004/jnccn.2022.0025.

4. Malignant neoplasm of the bronchi and lung. Clinical recommendations. Ministry of Health of the Russian Federation. 2021. (in Russian).

5. NCCN Clinical Practice Guidelines in Oncology (NCCN Guide-lines®). Non-Small Cell Lung Cancer. Version 1.2024.

6. Kessler D., Gmachl M., Mantoulidis A., Martin L.J., Zoephel A., Mayer M., Gollner A., Covini D., Fischer S., Gerstberger T., Gmaschitz T., Goodwin C., Greb P., Häring D., Hela W., Hoffmann J., Karolyi-Oezguer J., Knesl P., Kornigg S., Koegl M., Kousek R., Lamarre L., Moser F., Munico-Martinez S., Peinsipp C., Phan J., Rinnenthal J., Sai J., Salamon C., Scherbantin Y., Schipany K., Schnitzer R., Schrenk A., Sharps B., Siszler G., Sun Q., Waterson A., Wolkerstorfer B., Zeeb M., Pearson M., Fesik S.W., McConnell D.B. Drugging an undruggable pocket on KRAS. Proc Natl Acad Sci U S A. 2019; 116(32): 15823–9. doi: 10.1073/pnas.1904529116.

7. Malumbres M., Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003; 3(6): 459–65. doi: 10.1038/nrc1097. Erratum in: Nat Rev Cancer. 2003; 3(9): 708.

8. Friedlaender A., Drilon A., Weiss G.J., Banna G.L., Addeo A. KRAS as a druggable target in NSCLC: Rising like a phoenix after decades of development failures. Cancer Treat Rev. 2020; 85. doi: 10.1016/j.ctrv.2020.101978.

9. Ferrer I., Zugazagoitia J., Herbertz S., John W., Paz-Ares L., Schmid-Bindert G. KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer. 2018; 124: 53–64. doi: 10.1016/j.lungcan.2018.07.013.

10. Román M., Baraibar I., López I., Nadal E., Rolfo C., Vicent S., Gil-Bazo I. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018; 17(1): 33. doi: 10.1186/s12943-018-0789-x.

11. Poulin E.J., Bera A.K., Lu J., Lin Y.J., Strasser S.D., Paulo J.A., Huang T.Q., Morales C., Yan W., Cook J., Nowak J.A., Brubaker D.K., Joughin B.A., Johnson C.W., DeStefanis R.A., Ghazi P.C., Gondi S., Wales T.E., Iacob R.E., Bogdanova L., Gierut J.J., Li Y., Engen J.R., Perez-Mancera P.A., Braun B.S., Gygi S.P., Lauffenburger D.A., Westover K.D., Haigis K.M. Tissue-Specific OncogenicActivity of KRASA146T. Cancer Discov. 2019;9(6): 738–55. doi: 10.1158/2159-8290.CD-18-1220.

12. Yuan T.L., Amzallag A., Bagni R., Yi M., Afghani S., Burgan W., Fer N., Strathern L.A., Powell K., Smith B., Waters A.M., Drubin D., Thomson T., Liao R., Greninger P., Stein G.T., Murchie E., Cortez E., Egan R.K., Procter L., Bess M., Cheng K.T., Lee C.S., Lee L.C., Fellmann C., Stephens R., Luo J., Lowe S.W., Benes C.H., McCormick F. Differential Effector Engagement by Oncogenic KRAS. Cell Rep. 2018; 22(7): 1889–902. doi: 10.1016/j.celrep.2018.01.051.

13. Muñoz-Maldonado C., Zimmer Y., Medová M. A Comparative Analysis of Individual RAS Mutations in Cancer Biology. Front Oncol. 2019; 9: 1088. doi: 10.3389/fonc.2019.01088.

14. Riely G.J., Kris M.G., Rosenbaum D., Marks J., Li A., Chitale D.A., Nafa K., Riedel E.R., Hsu M., Pao W., Miller V.A., Ladanyi M. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res. 2008; 14(18): 5731–4. doi:10.1158/1078-0432.CCR-08-0646.

15. Slebos R.J., Hruban R.H., Dalesio O., Mooi W.J., Offerhaus G.J., Rodenhuis S. Relationship between K-ras oncogene activation and smoking in adenocarcinoma of the human lung. J Natl Cancer Inst. 1991; 83(14):1024–7. doi: 10.1093/jnci/83.14.1024.

16. Cox A.D., Fesik S.W., Kimmelman A.C., Luo J., Der C.J. Drugging the undruggable RAS: Mission possible? Nat Rev Drug Discov. 2014;13(11): 828–51. doi: 10.1038/nrd4389.

17. Ryan M.B., Corcoran R.B. Therapeutic strategies to target RAS-mutant cancers. Nat Rev Clin Oncol. 2018; 15(11): 709–20. doi: 10.1038/s41571-018-0105-0.

18. Awad M.M., Gadgeel S.M., Borghaei H., Patnaik A., Yang J.C., Powell S.F., Gentzler R.D., Martins R.G., Stevenson J.P., Altan M., Jalal S.I., Panwalkar A., Gubens M., Sequist L.V., Saraf S., Zhao B., Piperdi B., Langer C.J. Long-Term Overall Survival From KEYNOTE-021 Cohort G: Pemetrexed and Carboplatin With or Without Pembrolizumab as First-Line Therapy for Advanced Nonsquamous NSCLC. J Thorac Oncol. 2021; 16(1): 162–8. doi: 10.1016/j.jtho.2020.09.015.

19. Ostrem J.M., Peters U., Sos M.L., Wells J.A., Shokat K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013; 503(7477): 548–51. doi: 10.1038/nature12796.

20. Lito P., Solomon M., Li L.S., Hansen R., Rosen N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science. 2016; 351(6273): 604–8. doi: 10.1126/science.aad6204.

21. Janes M.R., Zhang J., Li L.S., Hansen R., Peters U., Guo X., Chen Y., Babbar A., Firdaus S.J., Darjania L., Feng J., Chen J.H., Li S., Li S., Long Y.O., Thach C., Liu Y., Zarieh A., Ely T., Kucharski J.M., Kessler L.V., Wu T., Yu K., Wang Y., Yao Y., Deng X., Zarrinkar P.P., Brehmer D., Dhanak D., Lorenzi M.V., Hu-Lowe D., Patricelli M.P., Ren P., Liu Y. Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell. 2018; 172(3): 578–89. doi: 10.1016/j.cell.2018.01.006.

22. Zeng M., Lu J., Li L., Feru F., Quan C., Gero T.W., Ficarro S.B., Xiong Y., Ambrogio C., Paranal R.M., Catalano M., Shao J., Wong K.K., Marto J.A., Fischer E.S., Jänne P.A., Scott D.A., Westover K.D., Gray N.S. Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C. Cell Chem Biol. 2017; 24(8): 1005–16. doi: 10.1016/j.chembiol.2017.06.017.

23. Liu J., Kang R., Tang D. The KRAS-G12C inhibitor: activity and resistance. Cancer Gene Therapy. 2022; 29: 875–8. doi: 10.1038/s41417-021-00383-9.

24. Dy G.K., Govindan R., Velcheti V., Falchook G.S., Italiano A., Wolf J., Sacher A.G., Takahashi T., Ramalingam S.S., Dooms C., Kim D.W., Addeo A., Desai J., Schuler M., Tomasini P., Hong D.S., Lito P., Tran Q., Jones S., Anderson A., Hindoyan A., Snyder W., Skoulidis F., Li B.T. Long-Term Outcomes and Molecular Correlates of Sotorasib Efficacy in Patients With Pretreated KRAS G12C-Mutated Non-Small-Cell Lung Cancer: 2-Year Analysis of CodeBreaK 100. J Clin Oncol. 2023; 41(18): 3311–7. doi: 10.1200/JCO.22.02524.

25. Canon J., Rex K., SaikiA.Y., Mohr C., Cooke K., Bagal D., Gaida K., Holt T., Knutson C.G., Koppada N., Lanman B.A., Werner J., Rapaport A.S., San Miguel T., Ortiz R., Osgood T., Sun J.R., Zhu X., McCarter J.D., Volak L.P., Houk B.E., Fakih M.G., O’Neil B.H., Price T.J., Falchook G.S., Desai J., Kuo J., Govindan R., Hong D.S., Ouyang W., Henary H., Arvedson T., Cee V.J., Lipford J.R. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019; 575(7781): 217–23. doi: 10.1038/s41586-019-1694-1.

26. Jänne P.A., Riely G.J., Gadgeel S.M., Heist R.S., Ou S.I., Pacheco J.M., Johnson M.L., Sabari J.K., Leventakos K., Yau E., Bazhenova L., Negrao M.V., Pennell N.A., Zhang J., Anderes K., Der-Torossian H., Kheoh T., Velastegui K., Yan X., Christensen J.G., Chao R.C., Spira A.I. Adagrasib in Non-Small-Cell Lung Cancer Harboring a KRASG12C Mutation. N Engl J Med. 2022; 387(2): 120–31. doi: 10.1056/NEJ-Moa2204619.

27. Ou S.I., Jänne P.A., Leal T.A., Rybkin I.I., Sabari J.K., Barve M.A., Bazhenova L., Johnson M.L., Velastegui K.L., Cilliers C., Christensen J.G., Yan X., Chao R.C., Papadopoulos K.P. First-in-Human Phase I/IB Dose-Finding Study of Adagrasib (MRTX849) in Patients with Advanced KRASG12C Solid Tumors (KRYSTAL-1). J Clin Oncol. 2022; 40(23):2530–8. doi: 10.1200/JCO.21.02752.

28. Skoulidis F., Li B.T., Dy G.K., Price T.J., Falchook G.S., Wolf J., Italiano A., Schuler M., Borghaei H., Barlesi F., Kato T., Curioni-Fonte-cedro A., Sacher A., Spira A., Ramalingam S.S., Takahashi T., Besse B., Anderson A., Ang A., Tran Q., Mather O., Henary H., Ngarmchamnanrith G., Friberg G., Velcheti V., Govindan R. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N Engl J Med. 2021; 384(25): 2371–81. doi: 10.1056/NEJMoa2103695.

29. Hong D.S., Fakih M.G., Strickler J.H., Desai J., Durm G.A., Shapiro G.I., Falchook G.S., Price T.J., Sacher A., Denlinger C.S., Bang Y.J., Dy G.K., Krauss J.C., Kuboki Y., Kuo J.C., Coveler A.L., Park K., Kim T.W., Barlesi F., Munster P.N., Ramalingam S.S., Burns T.F., Meric-Bernstam F., Henary H., Ngang J., Ngarmchamnanrith G., Kim J., Houk B.E., Canon J., Lipford J.R., Friberg G., Lito P., Govindan R., Li B.T. KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. N Engl J Med. 2020;383(13): 1207–17. doi: 10.1056/NEJMoa1917239.

30. Scheffler M., Ihle M.A., Hein R., Merkelbach-Bruse S., Scheel A.H., Siemanowski J., Brägelmann J., Kron A., Abedpour N., Ueckeroth F., Schüller M., Koleczko S., Michels S., Fassunke J., Pasternack H., Heydt C., Serke M., Fischer R., Schulte W., Gerigk U., Nogova L., Ko Y.D., Abdulla D.S.Y., Riedel R., Kambartel K.O., Lorenz J., Sauerland I., Randerath W., Kaminsky B., Hagmeyer L., Grohé C., Eisert A., Frank R., Gogl L., Schaepers C., Holzem A., Hellmich M., Thomas R.K., Peifer M., Sos M.L., Büttner R., Wolf J. K-ras Mutation Subtypes in NSCLC and Associated Co-occuring Mutations in Other Oncogenic Pathways. J Thorac Oncol. 2019; 14(4): 606–16. doi: 10.1016/j.jtho.2018.12.013.

31. Dunnett-Kane V., Nicola P., Blackhall F., Lindsay C. Mechanisms of resistance to KRAS(G12C) inhibitors. Cancers. 2021; 13: 151.


Review

For citations:


Laktionov K.K., Sarantseva K.A., Nelyubina L.A., Gamayunov S.V., Kolesnikova E.A., Gordiev M.G. KRAS-mutated non-small cell lung cancer: new therapy strategies. Siberian journal of oncology. 2024;23(2):72-81. (In Russ.) https://doi.org/10.21294/1814-4861-2024-23-2-72-81

Views: 1004


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)