Pharmaceutical and experimental-clinical aspects of photodynamic therapy combined with chemotherapy for malignant and premalignant tumors
https://doi.org/10.21294/1814-4861-2025-24-1-142-149
Abstract
The aim of the study was to analyze the effectiveness of experimental and clinical photodynamic therapy combined with chemotherapy in the treatment of malignant and premalignant lesions. Material and methods. The WoS, Scopus, MedLine, and RSCI databases have been searched and analyzed on this issue, mainly over the past 7 years. We found 288 sources on pharmaceutical and experimental-clinical studies of combined photodynamic therapy in combination with chemotherapy to compare the therapeutic effects of combination therapy and monotherapy, of which 50 were included in the review. Results. Photodynamic therapy is a new cancer treatment technology that has become increasingly common in recent years. In some cases, it is often an alternative method of treating cancer when there is a high risk of side effects and complications during traditional treatments such as surgery, radiation therapy and chemotherapy. The review summarized current pharmaceutical and experimental-clinical aspects of performing photodynamic therapy combined with chemotherapy. Despite the fact that the combination of photodynamic therapy and chemotherapy gives the best results in the treatment of malignant neoplasms, this treatment strategy has limitations. One of the major challenges is that very little research has been conducted in this field. Additional research is also needed to understand the mechanisms of increasing the effectiveness of combined photodynamic therapy. The challenge of reaching and effectively treating deeper tissues remains a significant obstacle to wider application of photodynamic therapy. Therefore, further research is needed to determine the most effective photosensitizers and technologies for using non-ionizing radiation. In the review, we have also shown new strategies of using nanopharmaceuticals, which demonstrated encouraging results. Conclusion. The improved therapeutic efficacy with reduced side effects of combination of photodynamic therapy and chemotherapy deserve further comprehensive study.
About the Authors
Yu. S. RomankoRussian Federation
Yuri S. Romanko - MD, DSc, Professor of the Department, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia; Professor of the Department, Academy of Postgraduate Education, FSCC of FMBA of Russia.
8/2, Trubetskaya St., Moscow, 119991; 91, Volokolamskoe Shosse, Moscow, 125371
Researcher ID (WOS) L-5965-2014, Author ID (Scopus) 7801463724
I. V. Reshetov
Russian Federation
Igor V. Reshetov - MD, DSc, Professor, Full Member of RAS, Director of the Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia; Head of the Department, Academy of Postgraduate Education, FSCC of FMBA of Russia; Scientific Director of the faculty, S.Y. Witte Moscow University.
8/2, Trubetskaya St., Moscow, 119991; 91, Volokolamskoe Shosse, Moscow, 125371; 12/1, 2nd Kozhukhovsky Drive, Moscow, 115432
Author ID (Scopus) 6701353127
References
1. Filonenko E.V. Clinical implementation and scientific development of photodynamic therapy in Russia in 2010–2020. Biomedical Photonics. 2021; 10(4): 4–22. (in Russian). doi: 10.24931/2413-9432-2021-9-4-4-22. EDN: UHTUBB.
2. Mironov A.F., Grin M.A., Pantushenko I.V., Ostroverkhov P.V., Ivanenkov Y.A., Filkov G.I., Plotnikova E.A., Karmakova T.A., Starovoitova A.V., Burmistrova N.V., Yuzhakov V.V., Romanko Y.S., Abakumov M.A., Ignatova A.A., Feofanov A.V., Kaplan M.A., Yakubovskaya R.I., Tsigankov A.A., Majouga A.G. Synthesis and Investigation of Photophysical and Biological Properties of Novel S-Containing Bacteriopurpurinimides. J Med Chem. 2017; 60(24): 10220–30. doi: 10.1021/acs.jmedchem.7b00577.
3. Hamblin M.R. Photodynamic Therapy for Cancer: What’s Past is Prologue. Photochem Photobiol. 2020; 96(3): 506–16. doi: 10.1111/php.13190.
4. Romanko Yu.S., Tsyb A.F., Kaplan M.A., Popuchiev V.V. Effect of photodynamic therapy with photodithazine on morphofunctional parameters of M-1 sarcoma. Bull Exp Biol Med. 2004; 138(6): 584–89. doi: 10.1007/s10517-005-0133-5.
5. Romanko Yu.S., Tsyb A.F., Kaplan M.A., Popuchiev V.V. Relationship between antitumor efficiency of photodynamic therapy with photoditasine and photoenergy density. Bull Exp Biol Med. 2005; 139(4): 460–64. doi: 10.1007/s10517-005-0322-2.
6. Zhou J., Ji M., Yang Y., Su W., Chen L., Liu Y., Fei Y., Ma J., Mi L. Two-photon photodynamic therapy with curcumin nanocomposite. Colloids Surf B Biointerfaces. 2025; 245. doi: 10.1016/j.colsurfb.2024.114306.
7. Zhyliayeva K.P., Demeshko P.D., Navumenka L.V., Krasny S.A., Tzerkovsky D.A., Zherko I.Yu. Photodynamic therapy of primary and recurrent forms of weakly pigment choroidal melanoma. Biomed Photon. 2022; 11(3): 17–23. (in Russian). doi: 10.24931/2413-9432-2022-11-3-17-23. EDN: NUAOBE.
8. Kogan E.A., Meerovich G.A., Karshieva S.S., Makarova E.A., Romanishkin I.D., Akhlyustina E.V., Meerovich I.G., Zharkov N.V., Koudan E.V., Demura T.A., Loschenov V.B. Photodynamic therapy of lung cancer with photosensitizers based on polycationic derivatives of synthetic bacteriochlorin (experimental study). Photodiagnosis Photodyn Ther. 2023; 42. doi: 10.1016/j.pdpdt.2023.103647.
9. Lee J.I., Ahn T.G., Choi J.H. Effects of Iron on Efficacy of Photodynamic Therapy Using Photolon in a Mouse Model of CT26 Colon Cancer. J Nippon Med Sch. 2023; 90(1): 41–49. doi: 10.1272/jnms.JNMS.2023_90-108.
10. Tzerkovsky D.A., Kozlovsky D.A., Mazurenko A.N., Adamenko N.D., Borichevsky F.F. Experimental in vivo studies of the antitumor efficacy of photodynamic and radiodynamic therapy and their combinations. Biomed Photon. 2023; 12(2): 24–33. (in Russian). doi: 10.24931/2413-9432-2023-12-2-24-33. EDN: UKPXZK.
11. Li Y., Wang X., Zhao Y., Wang X., Xue K., Yang L., Deng J., Sun S., Qi Z. Designing NIR AIEgens for lysosomes targeting and efficient photodynamic therapy of tumors. Bioorg Chem. 2024; 150. doi: 10.1016/j.bioorg.2024.107551.
12. Shirmanova M.V., Lukina M.M., Sirotkina M.A., Shimolina L.E., Dudenkova V.V., Ignatova N.I., Tobita S., Shcheslavskiy V.I., Zagaynova E.V. Effects of Photodynamic Therapy on Tumor Metabolism and Oxygenation Revealed by Fluorescence and Phosphorescence Lifetime Imaging. Int J Mol Sci. 2024; 25(3): 1703. doi: 10.3390/ijms25031703.
13. Shimolina L.E., Khlynova A.E., Gulin A.A., Elagin V.V., Gubina M.V., Bureev P.A., Sherin P.S., Kuimova M.K., Shirmanova M.V. Photodynamic therapy with Photoditazine increases microviscosity of cancer cells membrane in cellulo and in vivo. J Photochem Photobiol B. 2024; 259. doi: 10.1016/j.jphotobiol.2024.113007.
14. Reshetov I.V., Korenev S.V., Romanko Yu.S. Forms of cell death and targets at photodynamic therapy. Siberian Journal of Oncology. Oncol. 2022; 21(5): 149–54. (in Russian). doi: 10.21294/1814-4861-2022-21-5-149-154. EDN: ACMUZT.
15. Filonenko E.V. The history of development of fluorescence diagnosis and photodynamic therapy and their capabilities in oncology. Russ J Gen Chem. 2015; 85(1): 211–16. doi:10.1134/s1070363215010399.
16. Lyle R.E., Tran L.H., Eisen D.B. Innovations in Actinic Keratosis. Dermatol Clin. 2025; 43(1): 77–94. doi: 10.1016/j.det.2024.08.006.
17. Jing Y., Shu R., Wu T., Liu D., Luo X., Sun J., Chen F. Clinical efficacy of photodynamic therapy of oral potentially malignant disorder. Photodiagnosis Photodyn Ther. 2024; 46. doi: 10.1016/j.pdpdt.2024.104026.
18. Wang Y., Tang H., Wang K., Zhao Y., Xu J., Fan Y. Clinical evaluation of photodynamic therapy for oral leukoplakia: a retrospective study of 50 patients. BMC Oral Health. 2024; 24(1): 9. doi: 10.1186/s12903-023-03791-5.
19. Romanko Y.S., Kaplan M.A., Ivanov S.A., Galkin V.N., Molochkova Y.V., Kuntsevich Z.S., Tretiakova E.I., Sukhova T.E., Molochkov V.A., Molochkov A.V. Efficacy of photodynamic therapy for basal cell carcinoma using photosensitizers of different classes. Problems in Oncology. 2016; 62(3): 447–50. (in Russian). EDN: WCNOUD.
20. Reshetov I.V., Korenev S.V., Romanko Yu.S. Modern aspects of photodynamic therapy of basal cell skin cancer. Biomed Photon. 2022; 11(3): 35–9. (in Russian). doi: 10.24931/2413-9432-2022-11-3-35-39. EDN: AGQLSM.
21. Salvio A.G., Stringasci M.D., Requena M.B., Fregolenti B.A., Medeiro M.M.D.C., Santos R.G., Bagnato V.S. Long-term follow-up results of a pilot study for nodular basal cell carcinoma with PDT using partial home treatment protocol. Photodiagnosis Photodyn Ther. 2024; 45. doi: 10.1016/j.pdpdt.2023.103930.
22. Lavin L., Erlendsson A.M., Aleissa S., Aleisa A., Menzer C., Dusza S., Cordova M., Alshaikh H., Shah R., Pan A., Ketosugbo K., Hosein S., Lee E., Nehal K., Togsverd-Bo K., Haedersdal M., Rossi A. Jet-injection assisted photodynamic therapy for superficial and nodular basal cell carcinoma: A pilot study. Lasers Surg Med. 2024; 56(5): 446–53. doi: 10.1002/lsm.23793.
23. Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy in the treatment of patients with mycosis fungoides. Biomed Photon. 2022; 11(1): 27–36. (in Russian). doi: 10.24931/2413-9432-2022-11-1-27-36. EDN: BIUKCJ.
24. Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy of Bowen’s disease. Biomed Photon. 2023; 12(4): 22–29. (in Russian). doi: 10.24931/2413-9432-2023-12-4-22-29. EDN: OWRMXR.
25. Gilyadova A.V., Romanko Yu.S., Ishchenko A.A., Samoilova S.V., Shiryaev A.A., Alekseeva P.M., Efendiev K.T., Reshetov I.V. Photodynamic therapy for precancer diseases and cervical cancer (review of literature). Biomed Photon. 2021; 10(4): 59–67. (in Russian). doi: 10.24931/2413-9432-2021-10-4-59-67. EDN: XQGQTS.
26. Wang L., Liu X., Zhang J., Song M., Liu H., Xu Y., Meng L., Zhang Y., Jia L. Comparison of 5-ALA-PDT and LEEP of cervical squamous intraepithelial neoplasia (CIN2) with high-risk human papillomavirus infection in childbearing age women: A non-randomized controlled polit study. Photodiagnosis Photodyn Ther. 2024; 46. doi: 10.1016/j.pdpdt.2024.104044.
27. Qi W., Lv Q., Chen L., Huang S., Zhan H., Huang Z. Comparative study of photodynamic therapy (PDT) of cervical low-grade squamous intraepithelial lesion (LSIL). Photodiagnosis Photodyn Ther. 2024; 48. doi: 10.1016/j.pdpdt.2024.104247.
28. Cheremisina O.V., Vusik M.V., Soldatov A.N., Reiner I.B. Endoscopic laser technologies in clinical oncology. Siberian Journal of Oncology. 2007; (4): 5–11. (in Russian). EDN: KJAMCL.
29. Li Y., Li Y., Song Y., Liu S. Advances in research and application of photodynamic therapy in cholangiocarcinoma (Review). Oncol Rep. 2024; 51(3): 53. doi: 10.3892/or.2024.8712.
30. Olyushin V.E., Kukanov K.K., Nechaeva A.S., Sklyar S.S., Vershinin A.E., Dikonenko M.V., Golikova A.S., Mansurov A.S., Safarov B.I., Rynda A.Y., Papayan G.V. Photodynamic therapy in neurooncology, Biomedical Photonics. 2023; 12(3): 25–35. (in Russian). doi: 10.24931/2413–9432–2023–12-3-25-35. EDN: LENXOF.
31. Romanko Yu.S., Reshetov I.V. Experimental and clinical combined photodynamic therapy for malignant and premalignant lesions using various types of radiation. Siberian Journal of Oncology. 2024; 23(4): 141–51. (in Russian). doi: 10.21294/1814-4861-2024-23-4-141-151. EDN: VRBPTG.
32. Kastyro I.V., Reshetov I.V., Korenev S.V., Fatyanova A.S., Babaeva Yu.V., Romanko Yu.S. Photobiomodulation of oral mucositis in chemoradiotherapy for head and neck cancer. Head and neck. Russian Journal. 2023; 11(2): 65–74. (in Russian). doi: 10.25792/HN.2023.11.2.65-74. EDN: WSQMIP.
33. Zhou Y., Ren X., Hou Z., Wang N., Jiang Y., Luan Y. Engineering a photosensitizer nanoplatform for amplified photodynamic immunotherapy via tumor microenvironment modulation. Nanoscale Horiz. 2021; 6(2): 120–31. doi: 10.1039/d0nh00480d.
34. Shang Q., Zhou S., Jiang Y., Wang D., Wang J., Song A., Luan Y. Rational Design of a Robust Antibody-like Small-Molecule Inhibitor Nanoplatform for Enhanced Photoimmunotherapy. ACS Appl Mater Interfaces. 2020; 12(36): 40085–93. doi: 10.1021/acsami.0c11156.
35. Kaplan M.A., Galkin V.N., Romanko Yu.S., Drozhzhina V.V., Arkhipova L.M. Combination photodynamic therapy sarcomas M-1 in combination with chemotherapy. Radiation and Risk. 2016; 25(4): 90–99. (in Russian). doi: 10.21870/0131-3878-2016-25-4-90-99. EDN: XEGTTN.
36. Zhang K., Zhang Y., Meng X., Lu H., Chang H., Dong H., Zhang X. Light-triggered theranostic liposomes for tumor diagnosis and combined photodynamic and hypoxia-activated prodrug therapy. Biomaterials. 2018; 185: 301–9. doi: 10.1016/j.biomaterials.2018.09.033.
37. Park W., Bae B.C., Na K. A highly tumor-specific light-triggerable drug carrier responds to hypoxic tumor conditions for effective tumor treatment. Biomaterials. 2016; 77: 227–34. doi: 10.1016/j.biomaterials.2015.11.014.
38. Wang Y., Xie Y., Li J., Peng Z.H., Sheinin Y., Zhou J., Oupický D. Tumor-Penetrating Nanoparticles for Enhanced Anticancer Activity of Combined Photodynamic and Hypoxia-Activated Therapy. ACS Nano. 2017; 11(2): 2227–38. doi: 10.1021/acsnano.6b08731. Erratum in: ACS Nano. 2019; 13(4): 4855. doi: 10.1021/acsnano.9b01888.
39. Qian C., Feng P., Yu J., Chen Y., Hu Q., Sun W., Xiao X., Hu X., Bellotti A., Shen Q.D., Gu Z. Anaerobe-Inspired Anticancer Nanovesicles. Angew Chem Int Ed Engl. 2017; 56(10): 2588–93. doi: 10.1002/anie.201611783.
40. Ding Y.F., Xu X., Li J., Wang Z., Luo J., Mok G.S.P., Li S., Wang R. Hyaluronic acid-based supramolecular nanomedicine with optimized ratio of oxaliplatin/chlorin e6 for combined chemotherapy and O2-economized photodynamic therapy. Acta Biomater. 2023; 164: 397–406. doi: 10.1016/j.actbio.2023.03.039.
41. Yang Y., Zhang X., Bai Z., Cui Z., Liang W., Zhang J., Li K., Shi M., Liu Z., Wang J., Li J. Progressive enhanced photodynamic therapy and enhanced chemotherapy fighting against malignant tumors with sequential drug release. Biomed Mater. 2024; 19(4). doi: 10.1088/1748-605X/ad46bb.
42. Huang Y., Wu S., Li J., He C., Cheng Y., Li N., Wang Y., Wu Y., Zhang J. Self-Amplified pH/ROS Dual-Responsive Co-Delivery Nano- System with Chemo-Photodynamic Combination Therapy in Hepatic Carcinoma Treatment. Int J Nanomedicine. 2024; 19: 3737–51. doi: 10.2147/IJN.S453199.
43. Ning F., Wei D., Yu H., Song T., Li Z., Ma H., Sun Y. Construction of a Multifunctional Upconversion Nanoplatform Based on Autophagy Inhibition and Photodynamic Therapy Combined with Chemotherapy for Antitumor Therapy. Mol Pharm. 2024; 21(9): 4297–311. doi: 10.1021/acs.molpharmaceut.4c00203.
44. Xu X., Lu W., Zhang H., Wang X., Huang C., Huang Q., Xu W., Xu W. Hepatoma-Targeting and ROS-Responsive Polymeric Micelle-Based Chemotherapy Combined with Photodynamic Therapy for Hepatoma Treatment. Int J Nanomedicine. 2024; 19: 9613–35. doi: 10.2147/IJN.S475531.
45. Su Z., Xi D., Chen Y., Wang R., Zeng X., Xiong T., Xia X., Rong X., Liu T., Liu W., Du J., Fan J., Peng X., Sun W. Carrier-Free ATP-Activated Nanoparticles for Combined Photodynamic Therapy and Chemotherapy under Near-Infrared Light. Small. 2023; 19(11). doi: 10.1002/smll.202205825.
46. Wei G., Wang Y., Yang G., Wang Y., Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics. 2021; 11(13): 6370–92. doi: 10.7150/thno.57828.
47. Wiegell S.R., Fredman G., Andersen F., Bjerring P., Paasch U., Hædersdal M. Pre-treatment with topical 5-fluorouracil increases the efficacy of daylight photodynamic therapy for actinic keratoses - A randomized controlled trial. Photodiagnosis Photodyn Ther. 2024; 46. doi: 10.1016/j.pdpdt.2024.104069.
48. Carobeli L.R., Santos A.B.C., Martins L.B.M., Damke E., Consolaro M.E.L. Recent advances in photodynamic therapy combined with chemotherapy for cervical cancer: a systematic review. Expert Rev Anticancer Ther. 2024; 24(5): 263–82. doi: 10.1080/14737140.2024.2337259.
49. Inoue T., Yoneda M. Recent Updates on Local Ablative Therapy Combined with Chemotherapy for Extrahepatic Cholangiocarcinoma: Photodynamic Therapy and Radiofrequency Ablation. Curr Oncol. 2023; 30(2): 2159–68. doi: 10.3390/curroncol30020166.
50. Yu Y., Wang N., Wang Y., Shi Q., Yu R., Gu B., Maswikiti E.P., Chen H. Photodynamic therapy combined with systemic chemotherapy for unresectable extrahepatic cholangiocarcinoma: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther. 2023; 41. doi: 10.1016/j.pdpdt.2023.103318.
Review
For citations:
Romanko Yu.S., Reshetov I.V. Pharmaceutical and experimental-clinical aspects of photodynamic therapy combined with chemotherapy for malignant and premalignant tumors. Siberian journal of oncology. 2025;24(1):142-149. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-1-142-149