Preview

Siberian journal of oncology

Advanced search

Probiotics against pathogenic bacteria and cancer

https://doi.org/10.21294/1814-4861-2025-24-1-150-163

Abstract

This review focuses on the role of probiotics as alternative prevention and treatment of cancer. In this regard, we discuss the alternative cancer biotherapeutic drugs including live or dead probiotics and their metabolites, such as short chain fatty acids, inhibitory compounds of protein, polysaccharide, nucleic acid and ferrichrome in vitro, in vivo and clinical studies. We also summarize the available data on the relationship between the development of cervical, breast and colorectal cancers, and microbiome, as well as data about the potential of probiotics as an alternative approach to cancer prevention and treatment. Material and methods. A literature search was conducted using the Pubmed and eLibrary databases. Of 140 publications, the review included 57 studies. Results. the microbiome plays a crucial role in maintaining cellular and genetic stability within the body. it acts as a defense mechanism against infectious agents and various pathological processes including, cancers. The microbiome employs several strategies to neutralize carcinogenic agents. Preliminary clinical trials have yielded promising results, suggesting that probiotics may contribute to cancer prevention and enhance both the safety and efficacy of cancer treatment. However, further research is needed to confirm this suggestion. Current anticancer drugs often have significant drawbacks, including negative impact on patients’ quality of life, development of drug resistance, and high cost. Conclusion. The effectiveness of probiotic therapies appears to be influenced by several factors, such as the specific bacterial or fungal strain used, the dosage administered, and the duration of treatment. The review emphasizes the need for further rigorous clinical trials to validate the significant role of probiotics in cancer prevention and treatment. While existing research indicates promising results from probiotic treatments primarily in controlled settings, more extensive studies are required to assess both short-and long-term effects and establish standardized methodologies. This will help minimize potential side effects and find the way for the safe and effective application of probiotics as a medical intervention.

About the Authors

V. A. Belyavskaya
State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Russian Federation

Valentina A. Belyavskaya - DSc, Professor, Leading Researcher, State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor.

Koltsovo, Novosibirsk, 630559

Author ID (Scopus) 6701653852



N. V. Cherdyntseva
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; National Research Tomsk State University
Russian Federation

Nadezda V. Cherdyntseva - DSc, Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Laboratory of Molecular Oncology and Immunology, Deputy Director, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Professor, Department of Natural Compounds, Pharmaceutics and Medical Chemistry, National Research Tomsk State University.

5, Kooperativny St., Tomsk, 634009; 36, Lenina St., Tomsk, 634050

Researcher ID (WOS) C-7943-2012, Author ID (Scopus) 6603911744



N. V. Litviakov
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Nikolai V. Litviakov - DSc, Professor, Head of Viral Oncology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Researcher, Laboratory of Genetic Technologies of the Central Research Laboratory, Siberian State Medical University of the Ministry of Health of Russia.

5, Kooperativny St., Tomsk, 634009

Researcher ID (WOS) C-3263-2012, Author ID (Scopus) 6506850698



A. A. Ponomaryova
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Anastasia A. Ponomaryova - PhD, Researcher, Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences.

5, Kooperativny St., Tomsk, 634009

Researcher ID (WOS) D-8734-2012, Author ID (Scopus) 37116096000



E. V. Udut
Siberian State Medical University of the Ministry of Health of Russia
Russian Federation

Elena V. Udut - DSc, Professor, Head of Central Research Laboratory, Siberian State Medical University of the Ministry of Health of Russia.

2, Moskovsky trakt, Tomsk, 634050

Researcher ID (WOS) O-9807-2015, Author ID (Scopus) 6507329853



References

1. Summer M., Ali S., Fiaz U., Tahir H.M., Ijaz M., Mumtaz S., Mushtaq R., Khan R., Shahzad H., Fiaz H. Therapeutic and immunomodulatory role of probiotics in breast cancer: A mechanistic review. Arch Microbiol. 2023; 205(8): 296. doi: 10.1007/s00203-023-03632-7.

2. Yan F., Polk D.B. Probiotics and Probiotic-Derived Functional Factors-Mechanistic Insights Into Applications for Intestinal Homeostasis. Front Immunol. 2020; 11. doi: 10.3389/fimmu.2020.01428.

3. Huang R., Liu Z., Sun T., Zhu L. Cervicovaginal microbiome, high-risk HPV infection and cervical cancer: Mechanisms and therapeutic potential. Microbiol Res. 2024; 287. doi: 10.1016/j.micres.2024.127857.

4. Kvakova M., Kamlarova A., Stofilova J., Benetinova V., Bertkova I. Probiotics and postbiotics in colorectal cancer: Prevention and complementary therapy. World J Gastroenterol. 2022; 28(27): 3370-82. doi: 10.3748/wjg.v28.i27.3370.

5. Singh A., Alexander S.G., Mariin S. Gut microbiome homeostasis and the future of probiotics in cancer immunotherapy. Front Immunol. 2023; 14. doi: 10.3389/fimmu.2023.1114499.

6. Singh D., Singh A., Kumar S. Probiotics: friend or foe to the human immune system. Bull Natl Res Cent. 2023; 47. doi.org/10.1186/s42269-023-01098-7.

7. Dos Reis SA., da Conceicao L.L., SiqueiraN.P., Rosa D.D., da Silva LL., Peluzio M.D. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res. 2017; 37: 1-19. doi: 10.1016/j.nutres.2016.11.009.

8. Miira A., Guliekin M., Burney Ellis L., Bizzarri N., Bowden S., Taumberger N., Bracic T., Vieira-Bapiisia P., Sehouli J., Kyrgiou M. Genital tract microbiota composition profiles and use of prebiotics and probiotics in gynaecological cancer prevention: review of the current evidence, the European Society of Gynaecological Oncology prevention committee statement. Lancet Microbe. 2024; 5(3): 291-300. doi: 10.1016/S2666-5247(23)00257-4.

9. Mei Z., Li D. The role of probiotics in vaginal health. Front Cell Infect Microbiol. 2022; 12. doi: 10.3389/fcimb.2022.963868.

10. Zitvogel L., Daillere R., Roberti M.P., Routy B., Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017; 15(8): 465-78. doi: 10.1038/nrmicro.2017.44.

11. Pourmollaei S., Barzegari A., Farshbaf-Khalili A., Nouri M., Fattahi A., Shahnazi M., Dittrich R. Anticancer effect of bacteria on cervical cancer: Molecular aspects and therapeutic implications. Life Sci. 2020; 246. doi: 10.1016/j.lfs.2020.117413.

12. Piqué N., Berlanga M., Miñana-Galbis D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int J Mol Sci. 2019; 20(10). doi: 10.3390/ijms20102534.

13. Chee W.J.Y., Chew S.Y., Than L.T.L. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact. 2020; 19(1): 203. doi: 10.1186/s12934-020-01464-4.

14. Liang K., Liu Q., Li P., Luo H., Wang H., Kong Q. Genetically engineered Salmonella Typhimurium: Recent advances in cancer therapy. Cancer Lett. 2019; 448: 168-81. doi: 10.1016/j.canlet.2019.01.037.

15. Landry B.P., Tabor J.J. Engineering Diagnostic and Therapeutic Gut Bacteria. Microbiol Spectr. 2017; 5(5). doi: 10.1128/microbiolspec.BAD-0020-2017.

16. Komatsu A., Igimi S., Kawana K. Optimization of human papillomavirus (HPV) type 16 E7-expressing lactobacillus-based vaccine for induction of mucosal E7-specific IFNY-producing cells. Vaccine. 2018; 36(24): 3423-26. doi: 10.1016/j.vaccine.2018.05.009.

17. Cortes-Perez N.G., Azevedo V., Alcocer-González J.M., Rodriguez-Padilla C., Tamez-Guerra R.S., Corthier G., Gruss A., Langella P., Bermúdez-Humarán L.G. Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli. J Drug Target. 2005; 13(2): 89-98. doi: 10.1080/10611860400024219.

18. Cherdyntseva N.V., Litviakov N.V., Smo-lianinov E.S., Beliavskaia V.A., Masycheva V.I. Modulation of the antitumor effect of cyclophosphamide by the recombinant probiotic subalin. Problems in Oncology. 1997; 43(3): 313-16. (in Russian). EDN: TOXOZJ.

19. Kanmani P., Satish Kumar R., Yuvaraj N., Paari K.A., Pat-tukumar V., Arul V. Probiotics and its functionally valuable prod-ucts-a review. Crit Rev Food Sci Nutr. 2013; 53(6): 641-58. doi: 10.1080/10408398.2011.553752.

20. Sorokulova I. Modern status and perspectives of Bacillus bacteria as probiotics. J. Prob. Health. 2013; 1(4). doi: 10.4172/2329-8901.1000e106.

21. Bernardeau M., Lehtinen M.J., Forssten S.D., Nurminen P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J Food Sci Technol. 2017; 54(8): 2570-84. doi: 10.1007/s13197-017-2688-3.

22. Jeżewska-Frąckowiak J., Seroczyńska K., Banaszczyk J., Jedrzejczak G., Żylicz-Stachula A., Skowron P.M. The promises and risks of probiotic Bacillus species. Acta Biochim Pol. 2018; 65(4): 509-19. doi: 10.18388/abp.2018_2652.

23. Lee N.K., Won-Suck Kim W.S., Paik H.D. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol. 2019; 28(5): 1297-305. doi: 10.1007/s10068-019-00691-9.

24. RiazRajokaM.S., ZhaoH., Lu Y., LianZ., LiN., HussainN., ShaoD., Jin M., Li Q., Shi J. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk. Food Funct. 2018; 9(5): 2705-15. doi: 10.1039/c8fo00547h.

25. Wang K.D., Xu D.J., Wang B.Y., Yan D.H., Lv Z., Su J.R. Inhibitory Effect of Vaginal Lactobacillus Supernatants on Cervical Cancer Cells. Probiotics Antimicrob Proteins. 2018; 10(2): 236-42. doi: 10.1007/s12602-017-9339-x.

26. Shin R., Itoh Y., Kataoka M., Iino-Miura S., Miura R., Mizutani T., Fujisawa T. Anti-tumor activity of heat-killed Lactobacillus plantarum BF-LP284 on Meth-A tumor cells in BALB/c mice. Int J Food Sci Nutr. 2016; 67(6): 641-49. doi: 10.1080/09637486.2016.1185771.

27. Dubey V., Ghosh A.R., Bishayee K., Khuda-Bukhsh A.R. Appraisal of the anti-cancer potential of probiotic Pediococcus pentosaceus GS4 against colon cancer: in vitro and in vivo approaches. J. Funct. Foods. 2016; 23: 66-79. https://doi.org/10.1016/j.jff.2016.02.032.

28. Arai S., Iwabuchi N., Takahashi S., Xiao J.Z., Abe F., Hachimura S. Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigen-specific IgA secretion and induces follicular helper T cells in mice. PLoS One. 2018; 13(6). doi: 10.1371/journal.pone.0199018.

29. Sungur T., Aslim B., Karaaslan C., Aktas B. Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa). Anaerobe. 2017; 47: 137-44. doi: 10.1016/j.anaerobe.2017.05.013.

30. Li X., Wang H., Du X., Yu W., Jiang J., Geng Y., Guo X., Fan X., Ma C. Lactobacilli inhibit cervical cancer cell migration in vitro and reduce tumor burden in vivo through upregulation of E-cadherin. Oncol Rep. 2017; 38(3): 1561-68. doi: 10.3892/or.2017.5791.

31. Yin T.Q., Ou-Yang X., Jiao F.Y., Huang L.P., Tang X.D., Ren B.Q. Pseudomonas aeruginosa mannose-sensitive hemagglutinin inhibits proliferation and invasion via the PTEN/AKT pathway in HeLa cells. Oncotarget. 2016; 7(24): 37121-31. doi: 10.18632/oncotarget.9467.

32. Peng M., Tabashsum Z., Patel P., Bernhardt C., Biswas D. Linoleic Acids Overproducing Lactobacillus casei Limits Growth, Survival, and Virulence of Salmonella Typhimurium and Enterohaemorrhagic Escherichia coli. Front Microbiol. 2018; 9. doi: 10.3389/fmicb.2018.02663.

33. Cha M.K., Lee D.K., An H.M., Lee S.W., Shin S.H., Kwon J.H., Kim K.J., Ha N.J. Antiviral activity of Bifidobacterium adolescentis SPM1005-A on human papillomavirus type 16. BMC Med. 2012; 10: 72. doi: 10.1186/1741-7015-10-72.

34. ChuahLO.,FooHR.,Loh T.C., MohammedAUtheenN.B., YeapS.K., Abdul Mutalib N.E., Abdul Rahim R., Yusoff K. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement Altern Med. 2019; 19(1). doi: 10.1186/s12906-019-2528-2.

35. Ciffo F. Determination of the spectrum of antibiotic resistance of the “Bacillus subtilis” strains of Enterogermina. Chemioterapia. 1984; 3(1): 45-52.

36. MarsegliaG.L., ToscaM., CirilloI.,LicariA.,LeoneM.,MarsegliaA., Castellazzi A.M., Ciprandi G. Efficacy of Bacillus clausii spores in the prevention of recurrent respiratory infections in children: a pilot study. Ther Clin Risk Manag. 2007; 3(1): 13-17. doi: 10.2147/tcrm.2007.3.1.13.

37. Hyronimus B., Le Marrec C., Urdaci M.C. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J Appl Microbiol. 1998; 85(1): 42-50. doi: 10.1046/j.1365-2672.1998.00466.x.

38. Mandel D.R., Eichas K., Holmes J. Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial. BMC Complement Altern Med. 2010; 10: 1. doi: 10.1186/1472-6882-10-1.

39. Le Marrec C., Hyronimus B., Bressollier P., Verneuil B., Urdaci M.C. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl Environ Microbiol. 2000; 66(12): 5213-20. doi: 10.1128/AEM.66.12.5213-5220.2000.

40. Hong H.A., Duc le H., Cutting S.M. The use of bacterial spore formers as probiotics. FEMS Microbiol Rev. 2005; 29(4): 813-35. doi: 10.1016/j.femsre.2004.12.001.

41. Yang HJ., Kwon D.Y., Kim HJ., Kim MJ., Jung D.Y., Kang HJ., Kim D.S., Kang S., Moon N.R., Shin B.K., Park S. Fermenting soybeans with Bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostaisis in diabetic rats with experimental Alzheimer's type dementia. Eur J Nutr. 2015; 54(1): 77-88. doi: 10.1007/s00394-014-0687-y.

42. Pan X., Cai Y., Kong L., Xiao C., Zhu Q., Song Z. Probiotic Effects of Bacillus licheniformis DSM5749 on Growth Performance and Intestinal Microecological Balance of Laying Hens. Front Nutr. 2022; 9. doi: 10.3389/fnut.2022.868093.

43. Paik H.D., Park J.S., Park E. Effects of Bacillus polyfermenticus SCD on lipid and antioxidant metabolisms in rats fed a high-fat and high-cholesterol diet. Biol Pharm Bull. 2005; 28(7): 1270-74. doi: 10.1248/bpb.28.1270.

44. Ma E.L., Choi Y.J., Choi J., Pothoulakis C., Rhee S.H., Im E. The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer. 2010; 127(4): 780-90. doi: 10.1002/ijc.25011. Erratum in: Int J Cancer. 2010; 127(11).

45. Lee N.K., Son S.H., Jeon E.B., Jung G.H., Lee J.Y., Paik H.D. The prophylactic effect of probiotic Bacillus polyfermenticus KU3 against cancer cells. J. Funct. Foods. 2015; 14: 513-18. doi: 10.1016/j.jff.2015.02.019.

46. Ma Y., Wang W., Zhang H., Wang J., Zhang W., Gao J., Wu S., Qi G. Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Sci Rep. 2018; 8(1). doi: 10.1038/s41598-018-33762-8.

47. Hoa N.T., Baccigalupi L., Huxham A., Smertenko A., Van P.H., Ammendola S., Ricca E., Cutting A.S. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl Environ Microbiol. 2000; 66(12): 5241-47. doi: 10.1128/AEM.66.12.5241-5247.2000.

48. Jeon H.L., Lee N.K., Yang S.J., Kim W.S., Paik H.D. Probiotic characterization of Bacillus subtilis P223 isolated from kimchi. Food Sci Biotechnol. 2017; 26(6): 1641-48. doi: 10.1007/s10068-017-0148-5.

49. Pinchuk I.V., Bressollier P., Verneuil B., Fenet B., Sorokulova I.B., Megraud F., Urdaci M.C. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrob Agents Chemother. 2001; 45(11): 3156-61. doi: 10.1128/AAC.45.11.3156-3161.2001.

50. Chudnovskaya N.V., Ribalko S.L., Sorokulova I.B., Smirnov V.V., Belyavskaya V.A. Antiviral activity of Bacillus probiotics. Dopovidi Nac Acad Nauk Ukraini. 1995; 124-26.

51. Starosila D., Rybalko S., Varbanetz L., Ivanskaya N., Sorokulova I. Anti-influenza Activity of a Bacillus subtilis Probiotic Strain. Antimicrob Agents Chemother. 2017; 61(7). doi: 10.1128/AAC.00539-17.

52. Elshaghabee F.M.F., Rokana N., Gulhane R.D., Sharma C., Panwar H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front Microbiol. 2017; 8. doi: 10.3389/fmicb.2017.01490.

53. Sanders M.E., Morelli L., Tompkins T.A. Sporeformers as Human Probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Saf. 2003; 2(3): 101-10. doi: 10.1111/j.1541-4337.2003.tb00017.x.

54. Jacquier V., Nelson A., Jlali M., Rhayat L., Brinch K.S., Devillard E. Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomor-phology and animal performance. Poult Sci. 2019; 98(6): 2548-54. doi: 10.3382/ps/pey602.

55. Muscettola M., Grasso G., Blach-Olszewska Z., Migliaccio P., Borghesi-Nicoletti C., Giarratana M., Gallo V.C. Effects of Bacillus subtilis spores on interferon production. Pharmacol Res. 1992; 26s2: 176-77. doi: 10.1016/1043-6618(92)90652-r.

56. Bortoluzzi C., Serpa Vieira B., de Paula Dorigam J.C., Menconi A., Sokale A., Doranalli K., Applegate T.J. Bacillus subtilis DSM 32315 Supplementation Attenuates the Effects of Clostridium perfringens Challenge on the Growth Performance and Intestinal Microbiota of Broiler Chickens. Microorganisms. 2019; 7(3). doi: 10.3390/microorganisms7030071.

57. Grasso G., Migliaccio P., Tanganelli C., Brugo M.A., Muscettola M. Restorative effect of Bacillus subtilis spores on interferon production in aged mice. Ann NY Acad Sci. 1994; 717: 198-208. doi: 10.1111/j.1749-6632.1994.tb12088.x.


Review

For citations:


Belyavskaya V.A., Cherdyntseva N.V., Litviakov N.V., Ponomaryova A.A., Udut E.V. Probiotics against pathogenic bacteria and cancer. Siberian journal of oncology. 2025;24(1):150-163. https://doi.org/10.21294/1814-4861-2025-24-1-150-163

Views: 1026


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)