Mutations in the “hot spots” of the FLT3, NPM1, IDH1, IDH2 and DNMT3A genes in acute myeloid leukemia
https://doi.org/10.21294/1814-4861-2025-24-1-125-141
Abstract
The purpose of the study was to systematize and present up-to-date data on the prevalence, combination and clinical significance of mutations in the “hot spots” of the FLT3, NPM1, IDH1, IDH2, DNMT3A genes in acute myeloid leukemia (AML). Material and methods. A search was conducted for available domestic and foreign literary sources published in the PubMed and RSCI database over the past 10 years. 509 sources were found. Publications such as “letters to the editor” and “comments” on published works, animal and cell model studies, as well as works on secondary AML, AML/myelodysplastic syndrome were excluded from the analysis. Mostly more recent works with the full text of the publication available in Russian or English were used. As a result, 66 papers were included in this article. The results of high-performance sequencing AML samples (1567 adults and 144 children) presented in the C-Bioportal for cancer genomics database (C-Bioportal) were analyzed. Results. In published scientific studies, there is a different spectrum of simultaneously investigated mutations, different methodological approaches and a small volume of studied samples of patients with AML. It was found that at the time of diagnosis of leukemia in patients, several driver mutations in the NPM1, IDH1/2, FLT3 and DNMT3A genes may be detected, which implies their molecular synergy contributing to tumor development. The available scientific data indicate the accumulation of recurrent mutations of the FLT3, NPM1, FLT3, IDH1 and IDH2 genes in leukemia, starting from the stage of clonal hematopoiesis of unknown significance and ending with the debut of AML or its recurrence. According to the results of the analysis of the C-Bioportal, at the time of diagnosis of the disease, 46.6 % of patients have isolated or combined prognostically significant mutations DNMT3A p.R882, NPM1 p.W288cfs*12, FLT3-ITD and FLT3-TKD, IDH1 p.R132, as well as IDH2 p.R140; 35 % – mutations for which targeted drugs have been developed (Flt3, idH1 and idH2 inhibitors); in every fifth (18.1 %) case of AML NPM1 p.W288cfs*12 can be detected, which is used as an independent target for the molecular assessment of minimal residual disease (MRD), and in a third of cases, targets for the assessment of MRD, which should be studied in combination with additional markers (FLT3-ITD and FLT3-TKD, IDH1 p.R132, IDH2 p.R140). Conclusion. Due to the fact that in real clinical practice, NGS remains an inaccessible method for patients to date, it is advisable to screen the population of patients with AML for the presence of clinically significant mutations in the “hot spots” of the recurrent mutating NPM1, IDH1/2, FLT3 and DNMT3A genes.
Keywords
About the Authors
E. N. VoropaevaRussian Federation
Elena N. Voropaeva - MD, DSc, Leading Researcher, Laboratory of Molecular Genetic Studies of Therapeutic Diseases, Institute of Therapy and Preventive Medicine – branch of the Institute of Cytology and Genetics SB RAS; Associate Professor, Department of Therapy, Haematology and Transfusiology of the FPC and PPV, Associate Professor, Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University.
175/1, Boris Bogatkov St., Novosibirsk, 630089; 52, Red Prospect, Novosibirsk, 630091
Researcher ID (WOS) A-5360-2014, Author ID (Scopus) 36020818100
M. V. Burundukova
Russian Federation
Marina V. Burundukova - MD, Hematologist, City Clinical Hospital No. 2.
21, Polzunova St., Novosibirsk, 630051
A. A. Lyzlova
Russian Federation
Arina A. Lyzlova - MD, Hematologist, State Novosibirsk Regional Clinical Hospital.
130, Nemirovicha-Danchenko St., Novosibirsk, 630087
I. A. Chukhontseva
Russian Federation
Irina A. Chukhontseva - MD, Postgraduate, Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University of the Ministry of Health of Russia; doctor of clinical laboratory diagnostics, City Clinical Hospital No. 2.
52, Red Prospect, Novosibirsk, 630091; 21, Polzunova St., Novosibirsk, 630051
V. N. Maksimov
Russian Federation
Vladimir N. Maksimov - MD, DSc, Professor, Head of the Laboratory of Molecular-genetic Methods for the Study of Therapeutic Diseases, Institute of Therapy and Preventive Medicine – branch of the Institute of Cytology and Genetics SB RAS; Professor, Department of Medical Genetics and Biology, Faculty of Medicine, Novosibirsk State Medical University of the Ministry of Health of Russia.
175/1, Boris Bogatkov St., Novosibirsk, 630089; 52, Red Prospect, Novosibirsk, 630091
Researcher ID (WOS) H-7676-2012, Author ID (Scopus) 7202540327
T. I. Pospelova
Russian Federation
Tatiana I. Pospelova - MD, DSc, Professor, Head of the Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University of the Ministry of Health of Russia.
52, Red prospect, Novosibirsk, 630091
Author ID (Scopus) 7005792562
References
1. Clinical Guidelines: Acute myeloid leukaemia. 2024. (in Russian). [cited 2025 Feb 10]. URL: https://cr.minzdrav.gov.ru/preview-cr/131_2.
2. Zhou Y., Huang G., Cai X., Liu Y., Qian B., Li D. Global, regional, and national burden of acute myeloid leukemia, 1990–2021: a systematic analysis for the global burden of disease study 2021. Biomark Res. 2024; 12(1): 101. doi: 10.1186/s40364-024-00649-y.
3. Cancer care for the population of Russia in 2022. Ed. by A.D. Kaprin, V.V. Starinsky, A.O. Shakhzadova. Moscow, 2023. 252 p. (in Russian).
4. Anderson L.J., Girguis M., Kim E., Shewale J., Braunlin M., Werther W., Hidalgo-Lopez J.E., Zaman F., Kim C. A temporal and multinational assessment of acute myeloid leukemia (AML) cancer incidence, survival, and disease burden. Leuk Lymphoma. 2024; 65(10): 1482–92. doi: 10.1080/10428194.2024.2360536.
5. Khoury J.D., Solary E., Abla O., Akkari Y., Alaggio R., Apperley J.F., Bejar R., Berti E., Busque L., Chan J.K.C., Chen W., Chen X., Chng W.J., Choi J.K., Colmenero I., Coupland S.E., Cross N.C.P., De Jong D., Elghetany M.T., Takahashi E., Emile J.F., Ferry J. Fogelstrand L., Fontenay M., Germing U., Gujral S., Haferlach T., Harrison C., Hodge J.C., Hu S., Jansen J.H., Kanagal-Shamanna R., Kantarjian H.M., Kratz C.P., Li X.Q., Lim M.S., Loeb K., Loghavi S., Marcogliese A., Meshinchi S., Michaels P., Naresh K.N., Natkunam Y., Nejati R., Ott G., Padron E., Patel K.P., Patkar N., Picarsic J., Platzbecker U., Roberts I., Schuh A., Sewell W., Siebert R., Tembhare P., Tyner J., Verstovsek S., Wang W., Wood B., Xiao W., Yeung C., Hochhaus A. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022; 36(7): 1703–19. doi: 10.1038/s41375-022-01613-1.
6. Montoro J., Balaguer-Roselló A., Sanz J. Recent advances in allogeneic transplantation for acute myeloid leukemia. Curr Opin Oncol. 2023; 35(6): 564–73. doi: 10.1097/CCO.0000000000000992.
7. Yu J., Li Y., Zhang D., Wan D., Jiang Z. Clinical implications of recurrent gene mutations in acute myeloid leukemia. Exp Hematol Oncol. 2020; 9: 4. doi: 10.1186/s40164-020-00161-7.
8. Vinogradov A.V., Rezaikin A.V., Salakhov D.R., Ioshchenko S.E., Sergeev A.G. Comparative analysis of NPM1 gene mutations detection results using sequencing and immunohistochemical technique. Bulletin of the Ural Medical Academic Science. 2013; 4: 124–27. (in Russian). EDN: RUGZCT.
9. VinogradovA.V., RezaikinA.V., Sazonov S.V., Sergeev A.G. Clinical and pathological features DNMT3A, FLT3, KIT, NPM1, NRAS, TP53 and WT1 genes mutations detection in acute myeloid leukemia patients aged 15–45 years old. Genes and Cells. 2018; XIII(3): 70–74. (in Russian). doi: 10.23868/201811036. EDN: YXDIUX.
10. Kashlakova A.I., Parovichnikova E.N., Biderman B.V., Sidorova Y.V., Chabaeva Y.A., Troitskaya V.V., Lukianova I.A., Kokhno A.V., Sokolov A.N., Sudarikov A.B., Obukhova T.N., Savchenko V.G. Next-generation sequencing-based molecular genetic profiling in adults with acute myeloid leukaemia. Russian Journal of Hematology and Transfusiology. 2020; 65(4): 444–59. (in Russian). doi: 10.35754/0234-5730-2020-65-4-444-459. EDN: TXIHDT.
11. Radzhabova A.M., Voloshin S.V., Martynkevich I.S., Kuzyaeva A.A., Shuvaev V.A., Motyko E.V., Kuvshinov A.Y., Fominykh M.S., Schmidt A.V., Polushkina L.B., Bakay M.P., Tiranova S.A., Potihonova N.A., Zenina M.N., Kudryashova S.A., Balashova V.A., Chubukina J.V., Uspenskaya O.S., Karyagina E.V., Bogdanov A.N., Chechetkin A.V. The role of FLT3 gene mutations in acute myeloid leukemia: effect on course of disease and results of therapy. Genes and Cells. 2019; 14(1): 55–61. (in Russian). doi: 10.23868/201903007. EDN: UZRFBM.
12. Petrova E.V., Martynkevich I.S., Polushkina L.B., Martynenko L.S., Ivanova M.P., Tsybakova N.Yu., Kleina E.V., Shabanova E.S., Chechetkin A.V., Abdulkadyrov K.M. Clinical, hematological and molecular-genetic features of acute myeloid leukemia with mutations in FLT3, CKIT, NRAS and NPM1. Russian Journal of Hematology and Transfusiology. 2016; 61(2): 72–80. (in Russian). doi: 10.18821/0234-5730-2016-61-2-72-80. EDN: VZVYAD.
13. Vinogradov A.V., Rezaikin A.V., Salakhov D.R., Izotov D.V., Ioshchenko S.E., Sergeev A.G. Detection of mutations in the DNMT3A, FLT3, KIT, KRAS, NRAS, NPM1, TP53 and WT1 genes in acute myeloid leukemia with a normal blast cell karyotype. Bulletin of the Ural Medical Academic Science. 2016; 2: 89–101. (in Russian). doi: 10.22138/2500-0918-2016-14-2-89-101. EDN: WJBJHV.
14. Gao J.,Aksoy B.A., Dogrusoz U., Dresdner G., Gross B., Sumer S.O., Sun Y., Jacobsen A., Sinha R., Larsson E., Cerami E., Sander C., Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013; 6(269). doi: 10.1126/scisignal.2004088.
15. DiNardo C.D., Cortes J.E. Mutations in AML: prognostic and therapeutic implications. Hematology Am Soc Hematol Educ Program. 2016; (1): 348–55. doi: 10.1182/asheducation-2016.1.348.
16. Döhner H., Wei A.H., Appelbaum F.R., Craddock C., DiNardo C.D., Dombret H., Ebert B.L., Fenaux P., Godley L.A., Hasserjian R.P., Larson R.A., Levine R.L., Miyazaki Y., Niederwieser D., Ossenkoppele G., Röllig C., Sierra J., Stein E.M., Tallman M.S., Tien H.F., Wang J., Wierzbowska A., Löwenberg B. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022; 140(12): 1345–77. doi: 10.1182/blood.2022016867.
17. Bouligny I.M., Maher K.R., Grant S. Secondary-Type Mutations in Acute Myeloid Leukemia: Updates from ELN 2022. Cancers (Basel). 2023; 15(13): 3292. doi: 10.3390/cancers15133292.
18. Byun J.M., Yoo S.J., Kim H.J., Ahn J.S., Koh Y., Jang J.H., Yoon S.S. IDH1/2 mutations in acute myeloid leukemia. Blood Res. 2022; 57(1): 13–19. doi: 10.5045/br.2021.2021152.
19. Greif P.A., Konstandin N.P., Metzeler K.H., Herold T., Pasalic Z., Ksienzyk B., Dufour A., Schneider F., Schneider S., Kakadia P.M., Braess J., Sauerland M.C., Berdel W.E., Büchner T., Woermann B.J., Hiddemann W., Spiekermann K., Bohlander S.K. RUNX1 mutations in cytogenetically normal acute myeloid leukemia are associated with a poor prognosis and up-regulation of lymphoid genes. Haematologica. 2012; 97(12): 1909–15. doi: 10.3324/haematol.2012.064667.
20. Welch J.S. Patterns of mutations in TP53 mutated AML. Best Pract Res Clin Haematol. 2018; 31(4): 379–83. doi: 10.1016/j.beha.2018.09.010.
21. Su L., Shi Y.Y., Liu Z.Y., Gao S.J. Acute Myeloid Leukemia With CEBPA Mutations: Current Progress and Future Directions. Front Oncol. 2022; 12. doi: 10.3389/fonc.2022.806137.
22. Stubbins R.J., Francis A., Kuchenbauer F.C., Sanford D. Management of Acute Myeloid Leukemia: A Review for General Practitioners in Oncology. Curr. Oncol. 2022; 29(9): 6245–59. doi.:10.3390/curroncol29090491.
23. Liao M., Chen R., Yang Y., He H., Xu L., Jiang Y., Guo Z., He W., Jiang H., Wang J. Aging-elevated inflammation promotes DNMT3A R878H-driven clonal hematopoiesis. Acta Pharm Sin B. 2022; 12(2): 678–91. doi: 10.1016/j.apsb.2021.09.015.
24. Sendžikaitė G., Hanna C.W., Stewart-Morgan K.R., Ivanova E., Kelsey G. A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice. Nat Commun. 2019; 10(1): 1884. doi: 10.1038/s41467-019-09713-w.
25. Anteneh H., Fang J., Song J. Structural basis for impairment of DNA methylation by the DNMT3AR882H mutation. Nat Commun. 2020; 11(1): 2294. doi: 10.1038/s41467-020-16213-9.
26. Emperle M., Adam S., Kunert S., Dukatz M., Baude A., Plass C., Rathert P., Bashtrykov P., Jeltsch A. Mutations of R882 change flanking sequence preferences of the DNA methyltransferase DNMT3A and cellular methylation patterns. Nucleic Acids Res. 2019; 47(21): 11355–67. doi: 10.1093/nar/gkz911.
27. Wakita S., Marumo A., Morita K., Kako S., Toya T., Najima Y., Doki N., Kanda J., Kuroda J., Mori S., Satake A., Usuki K., Ueki T., Uoshima N., Kobayashi Y., Kawata E., Nakayama K., Nagao Y., Shono K., Shibusawa M., Tadokoro J., Hagihara M., Uchiyama H., Uchida N., Kubota Y., Kimura S., Nagoshi H., Ichinohe T., Kurosawa S., Motomura S., Hashimoto A., Muto H., Sato E., Ogata M., Mitsuhashi K., Ando J., Tashiro H., Sakaguchi M., Yui S., Arai K., Kitano T., Miyata M., Arai H., Kanda M., Itabashi K., Fukuda T., Kanda Y., Yamaguchi H. Mutational analysis of DNMT3A improves the prognostic stratification of patients with acute myeloid leukemia. Cancer Sci. 2023; 14(4): 1297–308. doi: 10.1111/cas.15720.
28. Yang X., Wang X., Yang Y., Li Z., Chen Y., Shang S., Wang Y. DNMT3Amutation promotes leukemia development through NAM-NAD metabolic reprogramming. J Transl Med. 2023; 21(1): 481. doi: 10.1186/s12967-023-04323-z.
29. Oñate G., Bataller A., Garrido A., Hoyos M., Arnan M., Vives S., Coll R., Tormo M., Sampol A., Escoda L., Salamero O., Garcia A., Bargay J., Aljarilla A., Nomdedeu J.F., Esteve J., Sierra J., Pratcorona M. Prognostic impact of DNMT3A mutation in acute myeloid leukemia with mutated NPM1. Blood Adv. 2022; 6(3): 882–90. doi: 10.1182/bloodadvances.2020004136.
30. Metzeler K.H., Walker A., Geyer S., Garzon R., Klisovic R.B., Bloomfield C.D., Blum W., Marcucci G. DNMT3Amutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia. 2012; 26(5): 1106–7. doi: 10.1038/leu.2011.342.
31. Chu X., Zhong L., Dan W., Wang X., Zhang Z., Liu Z., Lu Y., Shao X., Zhou Z., Chen S., Liu B. DNMT3A R882H mutation drives daunorubicin resistance in acute myeloid leukemia via regulating NRF2/ NQO1 pathway. Cell Commun Signal. 2022; 20(1): 168. doi: 10.1186/s12964-022-00978-1.
32. Sharma N., Liesveld J.L. NPM 1 Mutations in AML-The Landscape in 2023. Cancers (Basel). 2023; 15(4): 1177. doi: 10.3390/cancers15041177.
33. Stein E.M., DiNardo C.D., Fathi A.T., Pollyea D.A., Stone R.M., Altman J.K., Roboz G.J., Patel M.R., Collins R., Flinn I.W., Sekeres M.A., Stein A.S., Kantarjian H.M., Levine R.L., Vyas P., MacBeth K.J., Tosolini A., VanOostendorp J., Xu Q., Gupta I., Lila T., Risueno A., Yen K.E., Wu B., Attar E.C., Tallman M.S., de Botton S. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood. 2019; 133(7): 676–87. doi: 10.1182/blood-2018-08-869008.
34. Gilliland D.G., Griffin J.D. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002; 100(5): 1532–42. doi: 10.1182/blood-2002-02-0492.
35. Daver N., Schlenk R.F., Russell N.H., Levis M.J. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019; 33(2): 299–312. doi: 10.1038/s41375-018-0357-9.
36. Kiyoi H., Kawashima N., Ishikawa Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020; 111(2): 312–22. doi: 10.1111/cas.14274.
37. Linch D.C., Hills R.K., Burnett A.K., Khwaja A., Gale R.E. Impact of FLT3(ITD) mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood. 2014; 124(2): 273–6. doi: 10.1182/blood-2014-02-554667.
38. Oran B., Cortes J., Beitinjaneh A., Chen H.C., de Lima M., Patel K., Ravandi F., Wang X., Brandt M., Andersson B.S., Ciurea S., Santos F.P., de Padua Silva L., Shpall E.J., Champlin R.E., Kantarjian H., Borthakur G. Allogeneic Transplantation in First Remission Improves Outcomes Irrespective of FLT3-ITD Allelic Ratio in FLT3-ITD-Positive Acute Myelogenous Leukemia. Biol Blood Marrow Transplant. 2016; 22(7): 1218–26. doi: 10.1016/j.bbmt.2016.03.027.
39. Bill M., Jentzsch M., Bischof L., Kohlschmidt J., Grimm J., Schmalbrock L.K., Backhaus D., Brauer D., Goldmann K., Franke G.N., Vucinic V., Niederwieser D., Mims A.S., Platzbecker U., Eisfeld A.K., Schwind S. Impact of IDH1 and IDH2 mutation detection at diagnosis and in remission in patients withAMLreceiving allogeneic transplantation. Blood Adv. 2023; 7(3): 436–44. doi: 10.1182/bloodadvances.2021005789.
40. Yanada M., Matsuo K., Suzuki T., Kiyoi H., Naoe T. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta‐analysis. Leukemia. 2005; 19(8): 1345–49. doi: 10.1038/sj.leu.2403838.
41. DiNardo C.D., Stein E.M., de Botton S., Roboz G.J., Altman J.K., Mims A.S., Swords R., Collins R.H., Mannis G.N., Pollyea D.A., Donnellan W., Fathi A.T., Pigneux A., Erba H.P., Prince G.T., Stein A.S., Uy G.L., Foran J.M., Traer E., Stuart R.K., Arellano M.L., Slack J.L., Sekeres M.A., Willekens C., Choe S., Wang H., Zhang V., Yen K.E., Kapsalis S.M., Yang H., Dai D., Fan B., Goldwasser M., Liu H., Agresta S., Wu B., Attar E.C., Tallman M.S., Stone R.M., Kantarjian H.M. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N Engl J Med. 2018; 378(25): 2386–98. doi: 10.1056/NEJMoa1716984.
42. Lu C., Ward P.S., Kapoor G.S., Rohle D., Turcan S.,Abdel-Wahab O., Edwards C.R., Khanin R., Figueroa M.E., Melnick A., Wellen K.E., O’Rourke D.M., Berger S.L., Chan T.A., Levine R.L., Mellinghoff I.K., Thompson C.B. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012; 483(7390): 474–78. doi: 10.1038/nature10860.
43. Makhacheva F.A., Valiev T.T. Pediatric acute myeloid leukemias treatment: current scientific view. Oncohematology. 2020; 15(1): 10–27. (in Russian). doi: 10.17650/1818-8346-2020-15-1-10-27. EDN: JKSRWR.
44. Xu Q., Li Y., Lv N., Jing Y., Xu Y., Li Y., Li W., Yao Z., Chen X., Huang S., Wang L., Li Y., Yu L. Correlation Between Isocitrate Dehydrogenase Gene Aberrations and Prognosis of Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Clin Cancer Res. 2017; 23(15): 4511–22. doi: 10.1158/1078-0432.CCR-16-2628.
45. Molenaar R.J., Thota S., Nagata Y., Patel B., Clemente M., Przychodzen B., Hirsh C., Viny A.D., Hosano N., Bleeker F.E., Meggendorfer M., Alpermann T., Shiraishi Y., Chiba K., Tanaka H., van Noorden C.J., Radivoyevitch T., Carraway H.E., Makishima H., Miyano S., Sekeres M.A., Ogawa S., Haferlach T., Maciejewski J.P. Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia. 2015; 29(11): 2134–42. doi: 10.1038/leu.2015.91.
46. Meggendorfer M., Cappelli L.V., Walter W., Haferlach C., Kern W., Falini B., Haferlach T. IDH1R132, IDH2R140 and IDH2R172 in AML: different genetic landscapes correlate with outcome and may influence targeted treatment strategies. Leukemia. 2018; 32(5): 1249–53. doi: 10.1038/s41375-018-0026-z.
47. Middeke J.M., Metzeler K.H., Röllig C., Krämer M., Eckardt J.N., Stasik S., Greif P.A., Spiekermann K., Rothenberg-Thurley M., Krug U., Braess J., Krämer A., Hochhaus A., Brümmendorf T.H., Naumann R., Steffen B., Einsele H., Schaich M., Burchert A., Neubauer A., Görlich D., Sauerland C., Schäfer-Eckart K., Schliemann C., Krause S.W., Hänel M., Frickhofen N., Noppeney R., Kaiser U., Kaufmann M., Kunadt D., Wörmann B., Sockel K., von Bonin M., Herold T., Müller-Tidow C., Platzbecker U., Berdel W.E., Serve H., Baldus C.D., Ehninger G., Schetelig J., Hiddemann W., Bornhäuser M., Stölzel F., Thiede C. Differential impact of IDH1/2 mutational subclasses on outcome in adult AML: results from a large multicenter study. Blood Adv. 2022; 6(5): 1394–405. doi: 10.1182/bloodadvances.2021004934.
48. Kunadt D., Stasik S., Metzeler K.H., Röllig C., Schliemann C., Greif P.A., Spiekermann K., Rothenberg-Thurley M., Krug U., Braess J., Krämer A., Hochhaus A., Scholl S., Hilgendorf I., Brümmendorf T.H., Jost E., Steffen B., Bug G., Einsele H., Görlich D., Sauerland C., Schäfer-Eckart K., Krause S.W., Hänel M., Hanoun M., Kaufmann M., Wörmann B., Kramer M., Sockel K., Egger-Heidrich K., Herold T., Ehninger G., Burchert A., Platzbecker U., Berdel W.E., Müller-Tidow C., Hiddemann W., Serve H., Stelljes M., Baldus C.D., Neubauer A., Schetelig J., Thiede C., Bornhäuser M., Middeke J.M., Stölzel F.; A. M. L. Cooperative Group (AMLCG), Study Alliance Leukemia (SAL). Impact of IDH1 and IDH2 mutational subgroups inAMLpatients after allogeneic stem cell transplantation. J Hematol Oncol. 2022; 15(1): 126. doi: 10.1186/s13045-022-01339-8.
49. Pourrajab F., Zare-Khormizi M.R., Hashemi A.S., Hekmatimoghaddam S. Genetic Characterization and Risk Stratification of Acute Myeloid Leukemia. Cancer Manag Res. 2020; 12: 2231–53. doi: 10.2147/CMAR.S242479.
50. Amatangelo M.D., Quek L., Shih A., Stein E.M., Roshal M., David M.D., Marteyn B., Farnoud N.R., de Botton S., Bernard O.A., Wu B., Yen K.E., Tallman M.S., Papaemmanuil E., Penard-Lacronique V., Thakurta A., Vyas P., Levine R.L. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood. 2017; 130(6): 732–41. doi: 10.1182/blood-2017-04-779447.
51. Fathi A.T., DiNardo C.D., Kline I., Kenvin L., Gupta I., Attar E.C., Stein E.M., de Botton S.; AG221-C-001 Study Investigators. Differentiation Syndrome Associated With Enasidenib, a Selective Inhibitor of Mutant Isocitrate Dehydrogenase 2: Analysis of a Phase 1/2 Study. JAMA Oncol. 2018; 4(8): 1106–10. doi: 10.1001/jamaoncol.2017.4695.
52. Choe S., Wang H., DiNardo C.D., Stein E.M., de Botton S., Roboz G.J., Altman J.K., Mims A.S., Watts J.M., Pollyea D.A., Fathi A.T., Tallman M.S., Kantarjian H.M., Stone R.M., Quek L., Konteatis Z., Dang L., Nicolay B., Nejad P., Liu G., Zhang V., Liu H., Goldwasser M., Liu W., Marks K., Bowden C., Biller S.A., Attar E.C., Wu B. Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractoryAML. BloodAdv. 2020; 4(9): 1894–905. doi: 10.1182/bloodadvances.2020001503.
53. Mosele F., Remon J., Mateo J., Westphalen C.B., Barlesi F., Lolkema M.P., Normanno N., Scarpa A., Robson M., Meric-Bernstam F., Wagle N., Stenzinger A., Bonastre J., Bayle A., Michiels S., Bièche I., Rouleau E., Jezdic S., Douillard J.Y., Reis-Filho J.S., Dienstmann R., André F. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 2020; 31(11): 1491–505. doi: 10.1016/j.annonc.2020.07.014.
54. Ferreira-Gonzalez A., Hocum B., Ko G., Shuvo S., Appukkuttan S., Babajanyan S. Next-Generation Sequencing Trends among Adult Patients with Select Advanced Tumor Types:AReal-World Evidence Evaluation. J Mol Diagn. 2024; 26(4): 292–303. doi: 10.1016/j.jmoldx.2024.01.005.
55. Mat Yusoff Y., Ahid F., Abu Seman Z., Abdullah J., Kamaluddin N.R., Esa E., Zakaria Z. Comprehensive analysis of mutations and clonal evolution patterns in a cohort of patients with cytogenetically normal acute myeloid leukemia. Mol Cytogenet. 2021; 14(1): 45. doi: 10.1186/s13039-021-00561-2.
56. Stacey S.N., Zink F., Halldorsson G.H., Stefansdottir L., Gudjonsson S.A., Einarsson G., Hjörleifsson G., Eiriksdottir T., Helgadottir A., Björnsdottir G., Thorgeirsson T.E., Olafsdottir T.A., Jonsdottir I., Gretarsdottir S., Tragante V., Magnusson M.K., Jonsson H., Gudmundsson J., Olafsson S., Holm H., Gudbjartsson D.F., Sulem P., Helgason A., Thorsteinsdottir U., Tryggvadottir L., Rafnar T., Melsted P., Ulfarsson M.Ö., Vidarsson B., Thorleifsson G., Stefansson K. Genetics and epidemiology of mutational barcode-defined clonal hematopoiesis. Nat Genet. 2023; 55(12): 2149–59. doi: 10.1038/s41588-023-01555-z.
57. Morita K., Wang F., Jahn K., Hu T., Tanaka T., Sasaki Y., Kuipers J., Loghavi S., Wang S.A., Yan Y., Furudate K., Matthews J., Little L., Gumbs C., Zhang J., Song X., Thompson E., Patel K.P., Bueso-Ramos C.E., DiNardo C.D., Ravandi F., Jabbour E., Andreeff M., Cortes J., Bhalla K., Garcia-Manero G., Kantarjian H., Konopleva M., Nakada D., Navin N., Beerenwinkel N., Futreal P.A., Takahashi K. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020; 11(1): 5327. doi: 10.1038/s41467-020-19119-8.
58. Yao Y., Lin X., Wang C., Gu Y., Jin J., Zhu Y., Wang H. Identification of a novel NPM1 mutation in acute myeloid leukemia. Exp Hematol Oncol. 2023; 12(1): 87. doi: 10.1186/s40164-023-00449-4.
59. Schmalbrock L.K., Dolnik A., Cocciardi S., Sträng E., Theis F., Jahn N., Panina E., Blätte T.J., Herzig J., Skambraks S., Rücker F.G., Gaidzik V.I., Paschka P., Fiedler W., Salih H.R., Wulf G., Schroeder T., Lübbert M., Schlenk R.F., Thol F., Heuser M., Larson R.A., Ganser A., Stunnenberg H.G., Minucci S., Stone R.M., Bloomfield C.D., Döhner H., Döhner K., Bullinger L. Clonal evolution of acute myeloid leukemia with FLT3-ITD mutation under treatment with midostaurin. Blood. 2021; 137(22): 3093–104. doi: 10.1182/blood.2020007626.
60. Miles L.A., Bowman R.L., Merlinsky T.R., Csete I.S., Ooi A.T., Durruthy-Durruthy R., Bowman M., Famulare C., Patel M.A., Mendez P., Ainali C., Demaree B., Delley C.L., Abate A.R., Manivannan M., Sahu S., Goldberg A.D., Bolton K.L., Zehir A., Rampal R., Carroll M.P., Meyer S.E., Viny A.D., Levine R.L. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020; 587(7834): 477–82. doi: 10.1038/s41586-020-2864-x.
61. Grimm J., Bill M., Jentzsch M., Beinicke S., Häntschel J., Goldmann K., Schulz J., Cross M., Franke G.N., Behre G., Vucinic V., Pönisch W., Lange T., Niederwieser D., Schwind S. Clinical impact of clonal hematopoiesis in acute myeloid leukemia patients receiving allogeneic transplantation. Bone Marrow Transplant. 2019; 54(8): 1189–97. doi: 10.1038/s41409-018-0413-0.
62. Heuser M., Freeman S.D., Ossenkoppele G.J., Buccisano F., Hourigan C.S., Ngai L.L., Tettero J.M., Bachas C., Baer C., Béné M.C., Bücklein V., Czyz A., Denys B., Dillon R., Feuring-Buske M., Guzman M.L., Haferlach T., Han L., Herzig J.K., Jorgensen J.L., Kern W., Konopleva M.Y., Lacombe F., Libura M., Majchrzak A., Maurillo L., Ofran Y., Philippe J., Plesa A., Preudhomme C., Ravandi F., Roumier C., Subklewe M., Thol F., van de Loosdrecht A.A., van der Reijden B.A., Venditti A., Wierzbowska A., Valk P.J.M., Wood B.L., Walter R.B., Thiede C., Döhner K., Roboz G.J., Cloos J. 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2021; 138(26): 2753–67. doi: 10.1182/blood.2021013626.
63. Walter R.B., Ofran Y., Wierzbowska A., Ravandi F., Hourigan C.S., Ngai L.L., Venditti A., Buccisano F., Ossenkoppele G.J., Roboz G.J. Measurable residual disease as a biomarker in acute myeloid leukemia: theoretical and practical considerations. Leukemia. 2021; 35(6): 1529–38. doi: 10.1038/s41375-021-01230-4.
64. Thol F., Gabdoulline R., Liebich A., Klement P., Schiller J., Kandziora C., Hambach L., Stadler M., Koenecke C., Flintrop M., Pankratz M., Wichmann M., Neziri B., Büttner K., Heida B., Klesse S., Chaturvedi A., Kloos A., Göhring G., Schlegelberger B., Gaidzik V.I., Bullinger L., Fiedler W., Heim A., Hamwi I., Eder M., Krauter J., Schlenk R.F., Paschka P., Döhner K., Döhner H., Ganser A., Heuser M. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018; 132(16): 1703–13. doi: 10.1182/blood-2018-02-829911.
65. Volchkov E.V., Khozyainova A.A., Gurzhikhanova M.K., Larionova I.V., Matveev V.E., Evseev D.A., Ignatova A.K., Menyailo M.E., Venyov D.A., Vorobev R.S., Semchenkova A.A., Olshanskaya Y.V., Denisov E.V., Maschan M.A. Potential value of high-throughput single-cell DNAsequencing of Juvenile myelomonocytic leukemia: report of two cases. NPJ Syst Biol Appl. 2023; 9(1): 41. doi: 10.1038/s41540-023-00303-7.
66. García-Álvarez M., Yeguas A., Jiménez C., Medina-Herrera A., González-Calle V., Hernández-Ruano M., Maldonado R., Aires I., Casquero C., Sánchez-Villares I., Balanzategui A., Sarasquete M.E., Alcoceba M., Vidriales M.B., González-Díaz M., García-Sanz R., Chillón M.C. Single-Cell DNA Sequencing and Immunophenotypic Profiling to Track Clonal Evolution in an Acute Myeloid Leukemia Patient. Biomedicines. 2023; 12(1): 66. doi: 10.3390/biomedicines12010066.
Review
For citations:
Voropaeva E.N., Burundukova M.V., Lyzlova A.A., Chukhontseva I.A., Maksimov V.N., Pospelova T.I. Mutations in the “hot spots” of the FLT3, NPM1, IDH1, IDH2 and DNMT3A genes in acute myeloid leukemia. Siberian journal of oncology. 2025;24(1):125-141. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-1-125-141