Preview

Siberian journal of oncology

Advanced search

Analysis of homologous recombination deficiency in prostate cancer

https://doi.org/10.21294/1814-4861-2025-24-1-59-69

Abstract

Background. Mutations in homologous recombination repair (HRR) genes (BRCA2, ATM, CHEK2, NBN, etc.) are found in 20–25 % of patients with metastatic prostate cancer (PC) and are an indication for prescription of PARP inhibitors. Sensitivity to these drugs results from homologous recombination deficiency (HRD) in the tumor. It is currently not fully elucidated which HRR genes besides BRCA1/2 cause HRD. The aim of the study was to evaluate the presence of homologous recombination deficiency in pc associated with mutations in different HRR genes. Material and methods. Paired tumor and normal DNA samples from 272 pc patients were examined using the HiSNP Ultra Panel v1.0 NGS panel (Nanodigmbio). Tumor copy number variation profiles were used to obtain the HRD score, which was determined as the unweighted sum of three characteristics: the number of chromosomal regions with loss of heterozygosity (LOH), large scale state transitions (LST), and telomeric allelic imbalances (TAI). HRD scores in different pc categories were compared using the Mann–Whitney test. Results. The studied case series included 58 pcs with pathogenic/ likely pathogenic mutations in at least one of 34 HRR genes, and 214 pcs without HRR mutations. The median HRD scores in the groups with BRCA2, ATM, CHEK2, other HRR mutations and without HRR mutations were 41, 22.5, 7.5, 7.5, 14 and 9, respectively. The HRD score was significantly higher in BRCA2-associated tumors than in other PC categories (p<0.01 for all comparisons), except in cases with atm mutations, where the difference did not reach formal significance (p=0.051). Homologous recombination deficiency, defined as HRD score ≥25, was observed in 19/58 (32.8 %) PCs with HRR mutations and 40/214 (18.7 %) tumors without HRR mutations (p=0.03). In tumors without HRR mutations, the HRD score was significantly higher in the presence of somatic TP53 mutations (p<0.0001). Conclusion. In contrast to BRCA2-associated PCs, most tumors with mutations in the CHEK2, NBN, BLM, FANCM, BRCA1 genes are not characterized by homologous recombination deficiency. in the case of ATM gene lesions, approximately half of pcs have a high HRD score. Testing for HRD score allows identification of a significant proportion (5–19 %, depending on the threshold chosen) of tumors with HRD among pcs that do not contain mutations in HRR genes.

About the Authors

A. G. Iyevleva
N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia
Russian Federation

Aglaya G. Iyevleva - MD, PhD, Senior Researcher, Molecular Oncology Laboratory, N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia.

68, Leningradskaya St., Saint Petersburg, Pesochny village, 197758



S. N. Aleksakhina
N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia
Russian Federation

Svetlana N. Aleksakhina - PhD, Senior Researcher, Molecular Oncology Laboratory, N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia.

68, Leningradskaya St., Saint Petersburg, Pesochny village, 197758



A. P. Sokolenko
N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia
Russian Federation

Anna P. Sokolenko - MD, PhD, Senior Researcher, Molecular Oncology Laboratory, N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia.

68, Leningradskaya St., Saint Petersburg, Pesochny village, 197758



E. A. Otradnova
N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia
Russian Federation

Ekaterina A. Otradnova - Laboratory Assistant-Researcher, Molecular Oncology Laboratory, N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia.

68, Leningradskaya St., Saint Petersburg, Pesochny village, 197758



A. S. Nikitina
N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia
Russian Federation

Alisa S. Nikitina - Laboratory Assistant-Researcher, Molecular Oncology Laboratory, N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia.

68, Leningradskaya St., Saint Petersburg, Pesochny village, 197758



K. A. Kashko
N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia
Russian Federation

Kira A. Kashko - Laboratory Assistant-Researcher, Molecular Oncology Laboratory, N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia.

68, Leningradskaya St., Saint Petersburg, Pesochny village, 197758



M. V. Syomina
N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia
Russian Federation

Maria V. Syomina - Junior Researcher, Molecular Oncology Laboratory, N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia.

68, Leningradskaya St., Saint Petersburg, Pesochny village, 197758



N. S. Morozova
N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia
Russian Federation

Natalia S. Morozova - laboratory assistant, N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia; student, ITMO University.

68, Leningradskaya St., Saint Petersburg, Pesochny village, 197758



A. D. Shestakova
N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia
Russian Federation

Anna D. Shestakova - Pathologist, N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia.

68, Leningradskaya St., Saint Petersburg, Pesochny village, 197758



E. Sh. Kuligina
N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia
Russian Federation

Ekaterina Sh. Kuligina - PhD, Senior Researcher, N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia.

68, Leningradskaya St., Saint Petersburg, Pesochny village, 197758



E. N. Imyanitov
N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia
Russian Federation

Evgeny N. Imyanitov - MD, DSc, Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Research Department, N.N. Petrov National Medical Oncology Research Center of the Ministry of Health of Russia.

68, Leningradskaya St., Saint Petersburg, Pesochny village, 197758



References

1. Nosov A.K., Reva S.A., Berkut M.V. Contemporary aspects of treatment of metastatic prostate cancer. Practical Oncology. 2019; 20(2): 123–36. (in Russian). doi: 10.31917/2002123. EDN: WWKXTY.

2. Fenor de la Maza M.D., Pérez Gracia J.L., Miñana B., Castro E. PARP inhibitors alone or in combination for prostate cancer. Ther Adv Urol. 2024; 16. doi: 10.1177/17562872241272929.

3. Davies H., Glodzik D., Morganella S., Yates L.R., Staaf J., Zou X., Ramakrishna M., Martin S., Boyault S., Sieuwerts A.M., Simpson P.T., King T.A., Raine K., Eyfjord J.E., Kong G., Borg Å., Birney E., Stunnenberg H.G., van de Vijver M.J., Børresen-Dale A.L., Martens J.W., Span P.N., Lakhani S.R., Vincent-Salomon A., Sotiriou C., Tutt A., Thompson A.M., Van Laere S., Richardson A.L., Viari A., Campbell P.J., Stratton M.R., Nik-Zainal S. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017; 23(4): 517–25. doi: 10.1038/nm.4292.

4. Polak P., Kim J., Braunstein L.Z., Karlic R., Haradhavala N.J., Tiao G., Rosebrock D., Livitz D., Kübler K., Mouw K.W., Kamburov A., Maruvka Y.E., Leshchiner I., Lander E.S., Golub T.R., Zick A., Orthwein A., Lawrence M.S., Batra R.N., Caldas C., Haber D.A., Laird P.W., Shen H., Ellisen L.W., D’Andrea A.D., Chanock S.J., Foulkes W.D., Getz G. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat Genet. 2017; 49(10): 1476–86. https://doi.org/10.1038/ng.3934.

5. Quigley D.A., Dang H.X., Zhao S.G., Lloyd P., Aggarwal R., Alumkal J.J., Foye A., Kothari V., Perry M.D., Bailey A.M., Playdle D., Barnard T.J., Zhang L., Zhang J., Youngren J.F., Cieslik M.P., Parolia A., Beer T.M., Thomas G., Chi K.N., Gleave M., Lack N.A., Zoubeidi A., Reiter R.E., Rettig M.B., Witte O., Ryan C.J., Fong L., Kim W., Friedlander T., Chou J., Li H., Das R., Li H., Moussavi-Baygi R., Goodarzi H., Gilbert L.A., Lara P.N. Jr, Evans C.P., Goldstein T.C., Stuart J.M., Tomlins S.A., Spratt D.E., Cheetham R.K., Cheng D.T., Farh K., Gehring J.S., Hakenberg J., Liao A., Febbo P.G., Shon J., Sickler B., Batzoglou S., Knudsen K.E., He H.H., Huang J., Wyatt A.W., Dehm S.M., Ashworth A., Chinnaiyan A.M., Maher C.A., Small E.J., Feng F.Y. Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell. 2018; 174(3): 758–69. doi: 10.1016/j.cell.2018.06.039. Erratum in: Cell. 2018; 175(3): 889. doi: 10.1016/j.cell.2018.10.019.

6. Telli M.L., Timms K.M., Reid J., Hennessy B., Mills G.B., Jensen K.C., Szallasi Z., Barry W.T., Winer E.P., Tung N.M., Isakoff S.J., Ryan P.D., Greene-Colozzi A., Gutin A., Sangale Z., Iliev D., Neff C., Abkevich V., Jones J.T., Lanchbury J.S., Hartman A.R., Garber J.E., Ford J.M., Silver D.P., Richardson A.L. Homologous Recombination Deficiency (HRD) Score Predicts Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Clin Cancer Res. 2016; 22(15): 3764–73. doi: 10.1158/1078-0432.CCR-15-2477.

7. Isakoff S.J., Mayer E.L., He L., Traina T.A., Carey L.A., Krag K.J., Rugo H.S., Liu M.C., Stearns V., Come S.E., Timms K.M., Hartman A.R., Borger D.R., Finkelstein D.M., Garber J.E., Ryan P.D., Winer E.P., Goss P.E., Ellisen L.W. TBCRC009: A Multicenter Phase II Clinical Trial of Platinum Monotherapy With Biomarker Assessment in Metastatic Triple-Negative Breast Cancer. J Clin Oncol. 2015; 33(17): 1902–9. doi: 10.1200/JCO.2014.57.6660.

8. Mirza M.R., Monk B.J., Herrstedt J., Oza A.M., Mahner S., Redondo A., Fabbro M., Ledermann J.A., Lorusso D., Vergote I., Ben-Baruch N.E., Marth C., Mądry R., Christensen R.D., Berek J.S., Dørum A., Tinker A.V., du Bois A., González-Martín A., Follana P., Benigno B., Rosenberg P., Gilbert L., Rimel B.J., Buscema J., Balser J.P., Agarwal S., Matulonis U.A.; ENGOT-OV16/NOVA Investigators. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N Engl J Med. 2016; 375(22): 2154–64. doi: 10.1056/NEJMoa1611310.

9. Swisher E.M., Lin K.K., Oza A.M., Scott C.L., Giordano H., Sun J., Konecny G.E., Coleman R.L., Tinker A.V., O’Malley D.M., Kristeleit R.S., Ma L., Bell-McGuinn K.M., Brenton J.D., Cragun J.M., Oaknin A., Ray-Coquard I., Harrell M.I., Mann E., Kaufmann S.H., Floquet A., Leary A., Harding T.C., Goble S., Maloney L., Isaacson J., Allen A.R., Rolfe L., Yelensky R., Raponi M., McNeish I.A. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017; 18(1): 75–87. doi: 10.1016/S1470-2045(16)30559-9.

10. Coleman R.L., Oza A.M., Lorusso D., Aghajanian C., Oaknin A., Dean A., Colombo N., Weberpals J.I., Clamp A., Scambia G., Leary A., Holloway R.W., Gancedo M.A., Fong P.C., Goh J.C., O’Malley D.M., Armstrong D.K., Garcia-Donas J., Swisher E.M., Floquet A., Konecny G.E., McNeish I.A., Scott C.L., Cameron T., Maloney L., Isaacson J., Goble S., Grace C., Harding T.C., Raponi M., Sun J., Lin K.K., Giordano H., Ledermann J.A.; ARIEL3 investigators. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017; 390(10106): 1949–61. doi: 10.1016/S0140-6736(17)32440-6. Erratum in: Lancet. 2017; 390(10106): 1948. doi: 10.1016/S0140-6736(17)32702-2.

11. SokolenkoA.P., Gorodnova T.V., Bizin I.V., Kuligina E.S., Kotiv K.B., Romanko A.A., Ermachenkova T.I., Ivantsov A.O., Preobrazhenskaya E.V., Sokolova T.N., Broyde R.V., Imyanitov E.N. Molecular predictors of the outcome of paclitaxel plus carboplatin neoadjuvant therapy in high-grade serous ovarian cancer patients. Cancer Chemother Pharmacol. 2021; 88(3): 439–50. doi: 10.1007/s00280-021-04301-6.

12. Lotan T.L., Kaur H.B., Salles D.C., Murali S., Schaeffer E.M., Lanchbury J.S., Isaacs W.B., Brown R., Richardson A.L., Cussenot O., Cancel-Tassin G., Timms K.M., Antonarakis E.S. Homologous recombination deficiency (HRD) score in germline BRCA2-versus ATM-altered prostate cancer. Mod Pathol. 2021; 34(6): 1185–93. doi: 10.1038/s41379-020-00731-4.

13. Sokol E.S., Pavlick D., Khiabanian H., Frampton G.M., Ross J.S., Gregg J.P., Lara P.N., Oesterreich S., Agarwal N., Necchi A., Miller V.A., Alexander B., Ali S.M., Ganesan S., Chung J.H. Pan-Cancer Analysis of BRCA1 and BRCA2 Genomic Alterations and Their Association With Genomic Instability as Measured by Genome-Wide Loss of Heterozygosity. JCO Precis Oncol. 2020; 4: 442–65. doi: 10.1200/po.19.00345.

14. van der Auwera G.A., Carneiro M.O., Hartl C., Poplin R., DelAngelG.,Levy-MoonshineA.,JordanT.,ShakirK.,RoazenD.,ThibaultJ., Banks E., Garimella K.V., Altshuler D., Gabriel S., DePristo M.A. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013; 43(1110). doi: 10.1002/0471250953.bi1110s43.

15. Stopsack K.H. Efficacy of PARP Inhibition in Metastatic Castration-resistant Prostate Cancer is Very Different with Non-BRCA DNA Repair Alterations: Reconstructing Prespecified Endpoints for Cohort B from the Phase 3 PROfound Trial of Olaparib. Eur Urol. 2021; 79(4): 442–45. doi: 10.1016/j.eururo.2020.09.024.

16. Póti Á., Gyergyák H., Németh E., Rusz O., Tóth S., Kovácsházi C., Chen D., Szikriszt B., Spisák S., Takeda S., Szakács G., Szallasi Z., Richardson A.L., Szüts D. Correlation of homologous recombination deficiency induced mutational signatures with sensitivity to PARP inhibitors and cytotoxic agents. Genome Biol. 2019; 20(1). doi: 10.1186/s13059-019-1867-0.

17. Fallah J., Xu J., Weinstock C., Gao ., Heiss B.L., Maguire W.F., Chang E., Agrawal S., Tang S., Amiri-Kordestani L., Pazdur R., Kluetz P.G., Suzman D.L. Efficacy of Poly(ADP-ribose) Polymerase Inhibitors by Individual Genes in Homologous Recombination Repair Gene-Mutated Metastatic Castration-Resistant Prostate Cancer:AUS Food and Drug Administration Pooled Analysis. J Clin Oncol. 2024; 42(14): 1687–98. doi: 10.1200/JCO.23.02105.

18. Mateo J., Porta N., Bianchini D., McGovern U., Elliott T., Jones R., Syndikus I., Ralph C., Jain S., Varughese M., Parikh O., Crabb S., Robinson A., McLaren D., Birtle A., Tanguay J., Miranda S., Figueiredo I., Seed G., Bertan C., Flohr P., Ebbs B., Rescigno P., Fowler G., Ferreira A., Riisnaes R., Pereira R., Curcean A., Chandler R., Clarke M., Gurel B., Crespo M., Nava Rodrigues D., Sandhu S., Espinasse A., Chatfield P., Tunariu N., Yuan W., Hall E., Carreira S., de Bono J.S. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020; 21(1): 162–74. doi: 10.1016/S1470-2045-(19)30684-9.

19. Zhao D., Wang A., Li Y., Cai X., Zhao J., Zhang T., Zhao Y., Dong Y., Zhou F., Li Y., Wang J. Establishing the homologous recombination score threshold in metastatic prostate cancer patients to predict the efficacy of PARP inhibitors. J Natl Cancer Cent. 2024; 4(3): 280–87. doi: 10.1016/j.jncc.2024.05.005.

20. Decker B., Karyadi D.M., Davis B.W., Karlins E., Tillmans L.S., Stanford J.L., Thibodeau S.N., Ostrander E.A. Biallelic BRCA2 Mutations Shape the Somatic Mutational Landscape of Aggressive Prostate Tumors. Am J Hum Genet. 2016; 98(5): 818–29. doi: 10.1016/j.ajhg.2016.03.003.

21. Nguyen L., Martens J.W.M., Van Hoeck A., Cuppen E. Pan-cancer landscape of homologous recombination deficiency. Nat Commun. 2020; 11(1). doi: 10.1038/s41467-020-19406-4.

22. Barnett E.S., Schultz N., Stopsack K.H., Lam E.T., Arfe A., Lee J., Zhao J.L., Schonhoft J.D., Carbone E.A., Keegan N.M., Wibmer A., Wang Y., Solit D.B., Abida W., Wenstrup R., Scher H.I. Analysis of BRCA2 Copy Number Loss and Genomic Instability in Circulating Tumor Cells from Patients with Metastatic Castration-resistant Prostate Cancer. Eur Urol. 2023; 83(2): 112–20. doi: 10.1016/j.eururo.2022.08.010.

23. Takamatsu S., Brown J.B., Yamaguchi K., Hamanishi J., Yamanoi K., Takaya H., Kaneyasu T., Mori S., Mandai M., Matsumura N. Utility of Homologous Recombination Deficiency BiomarkersAcross Cancer Types. JCO Precis Oncol. 2022; 6. doi: 10.1200/PO.22.00085.

24. Zhu S., Zhao J., Nie L., Yin W., Zhang Y., Zhao F., Ni Y., Zhang X., Wang Z., Dai J., Liu Z., Chen J., Zeng Y., Wang Z., Sun G., Liang J., Zhao X., Zhu X., Tao R., Yang J., He B., Chen N., Shen P., Zeng H. Homologous recombination deficiency (HRD) score in aggressive prostatic adenocarcinoma with or without intraductal carcinoma of the prostate (IDC-P). BMC Med. 2022; 20(1). doi: 10.1186/s12916-022-02430-0.


Review

For citations:


Iyevleva A.G., Aleksakhina S.N., Sokolenko A.P., Otradnova E.A., Nikitina A.S., Kashko K.A., Syomina M.V., Morozova N.S., Shestakova A.D., Kuligina E.Sh., Imyanitov E.N. Analysis of homologous recombination deficiency in prostate cancer. Siberian journal of oncology. 2025;24(1):59-69. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-1-59-69

Views: 912


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)