Preview

Siberian journal of oncology

Advanced search

Molecular genetic predictors of progression of triple negative breast cancer

https://doi.org/10.21294/1814-4861-2025-24-1-70-78

Abstract

Introduction. Triple-negative breast cancer (TNBC) is a group of malignant breast tumors with poor prognosis and varying molecular genetic characteristics. In TNBC, genes determine whether patients belong to clusters that differ in prognosis. There are not enough studies that consider genes as risk factors for progression. The aim of this study was to identify genes of TNBC which are associated with high risk progression, and evaluate their prognostic significance. Material and methods. This study included 246 patients with TNBC. Forty-five genes performing various functions were used as a panel of genes. The molecular genetic research technique consisted of preliminary RNA isolation followed by real-time cDNA amplification using PCR. Mean gene expression levels were calculated as measures of central tendency of the numerical value with 95 CI. The significance of the influence of genes on the risk of progression (locoregional recurrence or distant metastasis) was assessed using the formation of the linear discriminant function and construction of ROC curve. The relationship between genes and clinical and morphological parameters was assessed using correlation analysis (Pearson’s χ2 Spearman’s ρ test). After determining the threshold values of gene expression levels and subsequent ranking of patients into groups with high and low levels, an analysis of the survival of the formed groups was carried out (Kaplan-Meier curves). When comparing survival curves, the long-rank test was used. Results. Two genes: PGR (p=0.007) and AR (p=0.001), which were associated with locoregional relapse, and 1 gene: FOXA1, which was associated with distant metastasis (p=0.001), were selected using discriminant analysis. Statistically significant (p<0.05) correlations between the gene expressions and the tumor grade and the level of proliferative activity (Ki67) were found. Low expression levels of PGR (≤-6.4), AR (≤-4.7), FOXA1 (≤-4.4) were associated with improved overall survival. Conclusion. In patients with TNBC, PGR and AR are markers of locoregional relapse, and FOXA1 is a marker of distant metastasis. The expression of PGR, AR, FOXA1 was significantly correlated with the grade of the tumor and Ki67. Low gene expressions were associated with favorable prognosis.

About the Authors

I. S. Panchenko
Regional Clinical Oncology Dispensary; Institute of Medicine, Ecology and Physical Education, Ulyanovsk State University
Russian Federation

Ivan S. Panchenko - MD, Assistant, O.P. Modnicov Department of Oncology and Radiation Diagnostics, T.Z. Bictimirov Medical Department, Institute of Medicine, Ecology and Physical Education, Ulyanovsk State University; Surgeon-Oncologist, Breast and Skin Surgical Oncology Department, Regional Clinical Oncology Dispensary.

90, 12 September St., Ulyanovsk, 432017; 42, Leo Tolstoy St., Ulyanovsk, 432017



V. V. Rodionov
National Medical Research Center of Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of Russia
Russian Federation

Valery V. Rodionov - MD, DSc, Head of the Department of Breast Pathology, National Medical Research Center of Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of Russia.

4, Academician Oparin St., Moscow, 117997



V. V. Kometova
National Medical Research Center of Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of Russia
Russian Federation

Vlada V. Kometova - MD, PhD, Head of the Pathology Department, National Medical Research Center of Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of Russia.

4, Academician Oparin St., Moscow, 117997



S. V. Panchenko
Regional Clinical Oncology Dispensary; Institute of Medicine, Ecology and Physical Education, Ulyanovsk State University
Russian Federation

Sergey V. Panchenko - MD, PhD, Associate Professor, O.P. Modnicov Department of Oncology and Radiation Diagnostics, T.Z. Bictimirov Medical Department, Institute of Medicine, Ecology and Physical Education, Ulyanovsk State University; Oncologist, Regional Clinical Oncology Dispensary.

90, 12 September St., Ulyanovsk, 432017; 42, Leo Tolstoy St., Ulyanovsk, 432017



M. G. Sharafutdinov
Regional Clinical Oncology Dispensary; Institute of Medicine, Ecology and Physical Education, Ulyanovsk State University
Russian Federation

Marat G. Sharafutdinov - MD, PhD,Associate Professor, Head of the O.P. Modnicov Department of Oncology and Radiation Diagnostics, T.Z. Bictimirov Medical Department, Institute of Medicine, Ecology and Physical Education, Ulyanovsk State University; Oncologist, Regional Clinical Oncology Dispensary.

90, 12 September St., Ulyanovsk, 432017; 42, Leo Tolstoy St., Ulyanovsk, 432017



I. A. Lavrentieva
Tver State Medical University of the Ministry of Health of Russia
Russian Federation

Irina A. Lavrentyeva - MD, PhD, Associate Professor, Department of Anatomical Pathology, Tver State Medical University of the Ministry of Health of Russia.

4, Sovetskaya St., Tver, 170100



References

1. Kennecke H., Yerushalmi R., Woods R., Cheang M.С.U., Voduc D., Speers C.H., Nielsen T.O., Gelmon K. Metastatic behavior of breast cancer subtypes. J. Clin Oncol. 2010; 28(20): 3271–77. doi: 10.1200/JCO.2009.25.9820.

2. Li X., Yang J., Peng L., Sahin A.A., Huo L., Ward K.C., O’Regan R., Torres M.A., Meisel J.L. Triple-negative breast cancer has worse over-all survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res Treat. 2017; 161(2): 279–87. doi: 10.1007/s10549-016-4059-6.

3. Sporikova Z., Koudelakova V., Trojanec R., Hajduch M. Genetic Markers in Triple-Negative Breast Cancer. Clin Breast Cancer. 2018; 18(5): 841–50. doi: 10.1016/j.clbc.2018.07.023.

4. Howard F.M., Olopade O.I. Epidemiology of Triple-Negative Breast Cancer: A Review. Cancer J. 2021; 27(1): 8–16. doi: 10.1097/PPO.0000000000000500.

5. Cortazar P., Zhang L., Untch M., Mehta K., Costantino J.P., Wolmark N., Bonnefoi H., Cameron D., Gianni L., Valagussa P., Swain S.M., Prowell T., Loibl S., Wickerham D.L., Bogaerts J., Baselga J., Perou C., Blumenthal G., Blohmer J., Mamounas E.P., Bergh J., Semiglazov V., Justice R., Eidtmann H., Paik S., Piccart M., Sridhara R., Fasching P.A., Slaets L., Tang S., Gerber B., Geyer C.E. Jr, Pazdur R., Ditsch N., Rastogi P., Eiermann W., von Minckwitz G. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014; 384(9938): 164–72. doi: 10.1016/S0140-6736(13)62422-8. Erratum in: Lancet. 2019; 393(10175): 986. doi: 10.1016/S0140-6736(18)32772-7.

6. Liedtke C., Mazouni C., Hess K.R., André F., Tordai A., Mejia J.A., Symmans W.F., Gonzalez-Angulo A.M., Hennessy B., Green M., Cristofanilli M., Hortobagyi G.N., Pusztai L. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008; 26(8): 1275–81. doi: 10.1200/JCO.2007.14.4147.

7. Metzger-Filho O., Tutt A., de Azambuja E., Saini K.S., Viale G., Loi S., Bradbury I., Bliss J.M., Azim H.A. Jr, Ellis P., Di Leo A., Baselga J., Sotiriou C., Piccart-Gebhart M. Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol. 2012; 30(15): 1879–87. doi: 10.1200/JCO.2011.38.2010.

8. Won K.A., Spruck C. Triple-negative breast cancer therapy: Current and future perspectives (Review). Int J Oncol. 2020; 57(6): 1245–61. doi: 10.3892/ijo.2020.5135.

9. Burstein M.D., Tsimelzon A., Poage G.M., Covington K.R., Contreras A., Fuqua S.A., Savage M.I., Osborne C.K., Hilsenbeck S.G., Chang J.C., Mills G.B., Lau C.C., Brown P.H. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015; 21(7): 1688–98. doi: 10.1158/1078-0432.CCR-14-0432.

10. Lehmann B.D., Bauer J.A., Chen X., Sanders M.E., Chakravarthy A.B., Shyr Y., Pietenpol J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011; 121(7): 2750–67. doi: 10.1172/JCI45014.

11. Liu Y.R., Jiang Y.Z., Xu X.E., Yu K.D., Jin X., Hu X., Zuo W.J., Hao S., Wu J., Liu G.Y., Di G.H., Li D.Q., He X.H., Hu W.G., Shao Z.M. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res. 2016; 18(1): 33. doi: 10.1186/s13058-016-0690-8.

12. Perou C.M., Sørlie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., Pollack J.R., Ross D.T., Johnsen H., Akslen L.A., Fluge O., Pergamenschikov A., Williams C., Zhu S.X., Lønning P.E., Børresen-Dale A.L., Brown P.O., Botstein D. Molecular portraits of human breast tumours. Nature. 2000; 406(6797): 747–52. doi: 10.1038/35021093.

13. Lehmann B .D., Colaprico A., Silva T.C., Chen J., Hanbing A., Yunguang B., Huang H., Wang L., James J.L., Balko J.M., Gonzales-Ericsson P.I., Sanders M.E., Zhang B., Pietenpol J.A., Chen X.S. Milti-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat Commun. 2021; 12. doi: 10.1038/s41467-021-26502-6.

14. Vtorushin S.V., Krakhmal N.V., Zavyalova M.V. Triple-negative breast cancer. Modern molecular genetic concepts and their clinical significance. Russian Journal of Archive of Pathology. 2021; 83(2): 46–51. (in Russian). doi: 10.17116/patol20218302146. EDN: DHFZXP.

15. Panchenko I.S., Rodionov V.V., Burmenskaya O.V., Kometova V.V., Bozhenko V.K., Sharafutdinov M.G., Panchenko S.V., Matveeva L.V. Clinical and morphological features of molecular genetic clusters of triple-negative breast cancer. Oncology Bulletin of the Volga region. 2022; 13(1): 8–17. (in Russian). doi: 10.32000/2078-1466-2022-1-8-17. EDN: JEDDYS.

16. PanchenkoI.S., Rodionov V.V., Burmenskaya O.V., Kometova V.V., Bozhenko V.K. Molecular genetic clusters of triple-negative breast cancer and their prognostic significance. Kazan Medical Journal. 2023; 104(2): 198–206. (in Russian). doi: 10.17816/KMJ104784. EDN: FWKMTY.

17. Molchanov O.E., Maystrenko D.N., Stanzhevskii A.A. Theranostics of triple negative breast cancer: a review. Diagnostic Radiology and Radiotherapy. 2023; 14(2): 15–30. (in Russian). doi: 10.22328/2079-5343-2023-14-2-15-30. EDN: PSSHHJ.

18. Sanges F., Floris M., Cossu-Rocca P., Muroni M.R., Pira G., Urru S.A.M., Barrocu R., Gallus S., Bosetti C., D’Incalci M., Manca A., Uras M.G., Medda R., Sollai E., Murgia A., Palmas D., Atzori F., Zinellu A., Cambosu F., Moi T., Ghiani M., Marras V., Santona M.C., Canu L., Valle E., Sarobba M.G., Onnis D., Asunis A., Cossu S., Orrù S., De Miglio M.R. Histologic subtyping affecting outcome of triple negative breast cancer: a large Sardinian population-based analysis. BMC Cancer. 2020; 20(1): 491. doi: 10.1186/s12885-020-06998-9.

19. Ma J., Chen C., Liu S., Ji J., Wu D., Huang P., Wei D., Fan Z., Ren L. Identification of a five genes prognosis signature for triple-negative breast cancer using multi-omics methods and bioinformatics analysis. Cancer Gene Ther. 2022; 29(11): 1578–89. doi: 10.1038/s41417-022-00473-2. Erratum in: Cancer Gene Ther. 2022; 29(11): 1803. doi: 10.1038/s41417-022-00498-7.

20. Hu X.Q., Chen W.L., Ma H.G., Jiang K. Androgen receptor expression identifies patient with favorable outcome in operable triple negative breast cancer. Oncotarget. 2017; 8(34): 56364–74. doi: 10.18632/oncotarget.16913.

21. Grellety T. Cancer du sein triple négatif exprimant le récepteur aux androgènes: de la biologie à la thérapeutique [Androgen receptor-positive triple negative breast cancer: From biology to therapy]. Bull Cancer. 2020; 107(4): 506–16. French. doi: 10.1016/j.bulcan.2019.12.012.

22. Qiu P., Guo Q., Yao Q., Chen J., Lin J. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer. PLoS One. 2021; 16(11). doi: 10.1371/journal.pone.0254283.

23. Sghaier I., Zidi S., El-Ghali R.M., Daldoul A., Aimagambetova G., Almawi W.Y. Unique ESR1 and ESR2 estrogen receptor gene variants associated with altered risk of triple-negative breast cancer: A case-control study. Gene. 2023; 851. doi: 10.1016/j.gene.2022.146969.

24. Kahl I., Mense J., Finke C., Boller A.L., Lorber C., Győrffy B., Greve B., Götte M., Espinoza-Sánchez N.A. The cell cycle-related genes RHAMM, AURKA, TPX2, PLK1, and PLK4 are associated with the poor prognosis of breast cancer patients. J Cell Biochem. 2022; 123(3): 581–600. doi: 10.1002/jcb.30205.

25. Perez-Balaguer A., Ortiz-Martínez F., García-Martínez A., Pomares-Navarro C., Lerma E., Peiró G. FOXA2 mRNA expression is associated with relapse in patients with Triple-Negative/Basal-like breast carcinoma. Breast Cancer Res Treat. 2015; 153(2): 465–74. doi: 10.1007/s10549-015-3553-6.

26. Yuan Q., Zheng L., Liao Y., Wu G. Overexpression of CCNE1 confers a poorer prognosis in triple-negative breast cancer identified by bioinformatic analysis. World J Surg Oncol. 2021; 19(1): 86. doi: 10.1186/s12957-021-02200-x.

27. Bai Y., Yuan F., Yu J., Si Y., Zheng Y., Li D. A BIRC5High COD1Low Cancer Tissue Phenotype Indicates Poorer Prognosis of Metastatic Breast Cancer Patients. Cancer Inform. 2022; 21. doi: 10.1177/11769351221096655.

28. Zimmerli D., Brambillasca C.S., Talens F., Bhin J., Linstra R., Romanens L., Bhattacharya A., Joosten S.E.P., Da Silva A.M., Padrao N., Wellenstein M.D., Kersten K., de Boo M., Roorda M., Henneman L., de Bruijn R., Annunziato S., van der Burg E., Drenth A.P., Lutz C., Endres T., van de Ven M., Eilers M., Wessels L., de Visser K.E., Zwart W., Fehrmann R.S.N., van Vugt M.A.T.M., Jonkers J. MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling. Nat Commun. 2022; 13(1): 6579. doi: 10.1038/s41467-022-34000-6.

29. Liu Y., Zhang A., Bao P.P., Lin L., Wang Y., Wu H., Shu X.O., Liu A., Cai Q. MicroRNA-374b inhibits breast cancer progression through regulating CCND1 and TGFAgenes. Carcinogenesis. 2021; 42(4): 528–36. doi: 10.1093/carcin/bgab005.

30. Cui N.P., Qiao S., Jiang S., Hu J.L., Wang T.T., Liu W.W., Qin Y., Wang Y.N., Zheng L.S., Zhang J.C., Ma Y.P., Chen B.P., Shi J.H. Protein Tyrosine Kinase 7 Regulates EGFR/Akt Signaling Pathway and Correlates With Malignant Progression in Triple-Negative Breast Cancer. Front Oncol. 2021; 11. doi: 10.3389/fonc.2021.699889.

31. Wang Q., Li Z., Hu Y., Zheng W., Tang W., Zhai C., Gu Z., Tao J., Wang H. Retraction Note to: Circ-TFCP2L1 Promotes the Proliferation and Migration of Triple Negative Breast Cancer through Sponging miR-7 by Inhibiting PAK1. J Mammary Gland Biol Neoplasia. 2021; 26(1): 87. doi: 10.1007/s10911-021-09481-8.


Review

For citations:


Panchenko I.S., Rodionov V.V., Kometova V.V., Panchenko S.V., Sharafutdinov M.G., Lavrentieva I.A. Molecular genetic predictors of progression of triple negative breast cancer. Siberian journal of oncology. 2025;24(1):70-78. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-1-70-78

Views: 788


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)