Influence of immune targeted therapy on immune system parameters in patients with endometrial cancer
https://doi.org/10.21294/1814-4861-2025-24-2-56-67
Abstract
Immune targeted therapy (ITT) including pembrolizumab, an immune checkpoint inhibitor, and lenvatinib, a targeted drug that blocks receptor tyrosine kinases, is one of the main treatment strategies for advanced endometrial cancer (aEC) patients with proficient mismatch repair (pMMR) and microsatellite stable (MSS). Since immunological mechanisms are involved in the implementation of the therapeutic effects of pembrolizumab and lenvatinib, it is likely that the current state of the patients’ immune system affects the efficacy of ITT. The purpose of the study was to investigate changes in peripheral blood immune parameters depending on the response to therapy in aEC patients who received therapy with pembrolizumab and lenvatinib. Material and Methods. The study included 12 patients with stage II–IV (T2–4N0–2M0–1) aEC with pMMR and MSS, who received therapy with combination of pembrolizumab and lenvatinib. All patients were divided into 2 groups: 1) with disease progression within 6 months of starting ITT (n=4), 2) without signs of progression for more than 6 months (n=8). The immune parameters (the number of VEGFR+ monocytes and VEGFR expression on monocytes, the number of PD-1+ cells in peripheral blood and PD-1 expression on them, the lymphocyte subsets) were evaluated by flow cytometry before starting ITT, 2 and 6 months after therapy. The control group consisted of 39 patients with newly diagnosed EC prior to anticancer therapy. Results. ITT resulted in significant changes in the number of VEGFR+ monocytes and VEGFR expression on monocytes, as well as in the number of PD-1+ cells in peripheral blood and PD-1 expression on them, along with alterations in the lymphocyte subsets. Changes in the immune parameters were related to the response to ITT. At the point of outcome (during disease progression or in the case of long-term response to therapy) the difference in the parameters reached the level of statistical significance. In the case of effective ITT, the immune parameters approached the values observed in control group patients with EC being newly diagnosed. Conclusion. Changes in immune system parameters of aEC patients treated with pembrolizumab in combination with lenvatinib were found to be related to response to therapy.
Keywords
About the Authors
M. N. StakheyevaRussian Federation
Marina N. Stakheyeva, MD, DSc, Leading Researcher, Laboratory of Molecular Oncology and Immunology; Professor
Researcher ID (WOS): C-6184-2012. Author ID (Scopus): 6505941716
5, Kooperativny St., Tomsk, 634009
2, Moskovsky trakt, Tomsk, 634050
N. A. Ermak
Russian Federation
Nikita A. Ermak, MD, Postgraduate, Research Assistant, Laboratory of Molecular Oncology and Immunology
Author ID (Scopus): 57887085900
5, Kooperativny St., Tomsk, 634009
A. A. Maltseva
Russian Federation
Anastasia A. Maltseva, MD, Postgraduate
Author ID (Scopus): 57215558396
5, Kooperativny St., Tomsk, 634009
E. I. Livanos
Russian Federation
Ekaterina I. Livanos, 6th year student
2, Moskovsky trakt, Tomsk, 634050
L. A. Kolomiets
Russian Federation
Ekaterina I. Livanos, 6th year student; Professor, Department of Oncology
Researcher ID (WOS): C-8573-2012. Author ID (Scopus): 7004921120
5, Kooperativny St., Tomsk, 634009
2, Moskovsky trakt, Tomsk, 634050
N. V. Cherdyntseva
Russian Federation
Nadezhda V. Cherdyntseva, DSc, Professor, Corresponding Member of Russian Academy of Sciences, Head of the Laboratory of Molecular Oncology and Immunology; Senior Researcher
Researcher ID (WOS): С-7943-2012. Author ID (Scopus): 6603911744
5, Kooperativny St., Tomsk, 634009
References
1. Makker V., Colombo N., Casado Herráez A., Monk B.J., Mackay H., Santin A.D., Miller D.S., Moore R.G., Baron-Hay S., Ray-Coquard I., Ushijima K., Yonemori K., Kim Y.M., Guerra Alia E.M., Sanli U.A., Bird S., Orlowski R., McKenzie J., Okpara C., Barresi G., Lorusso D. Lenvatinib Plus Pembrolizumab in Previously Treated Advanced Endometrial Cancer: Updated Efficacy and Safety From the Randomized Phase III Study 309/ KEYNOTE-775. J Clin Oncol. 2023; 41(16): 2904–10. doi: 10.1200/JCO.22.02152.
2. Cao W., Ma X., Fischer J.V., Sun C., Kong B., Zhang Q. Immunotherapy in endometrial cancer: rationale, practice and perspectives. Biomark Res. 2021; 9(1): 49. doi: 10.1186/s40364-021-00301-z.
3. Gubin M.V. Using convolutional neural networks to classify audio signal in noisy sound scenes. 2018 Global Smart Industry Conference (GloSIC). 2018; 1–6. doi: 10.1109/GloSIC.2018.8570117.
4. Sun N.Y., Chen Y.L., Wu W.Y., Lin H.W., Chiang Y.C., Chang C.F., Tai Y.J., Hsu H.C., Chen C.A., Sun W.Z., Cheng W.F. Blockade of PD-L1 Enhances Cancer Immunotherapy by Regulating Dendritic Cell Maturation and Macrophage Polarization. Cancers (Basel). 2019; 11(9): 1400. doi: 10.3390/cancers11091400.
5. Kudo M., Ueshima K., Chan S., Minami T., Chishina H., Aoki T., Takita M., Hagiwara S., Minami Y., Ida H., Takenaka M., Sakurai T., Watanabe T., Morita M., Ogawa C., Wada Y., Ikeda M., Ishii H., Izumi N., Nishida N. Lenvatinib as an Initial Treatment in Patients with IntermediateStage Hepatocellular Carcinoma Beyond Up-To-Seven Criteria and ChildPugh A Liver Function: A Proof-Of-Concept Study. Cancers (Basel). 2019; 11(8): 1084. doi: 10.3390/cancers11081084.
6. Kato Y., Tabata K., Kimura T., Yachie-Kinoshita A., Ozawa Y., Yamada K., Ito J., Tachino S., Hori Y., Matsuki M., Matsuoka Y., Ghosh S., Kitano H., Nomoto K., Matsui J., Funahashi Y. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS One. 2019; 14(2). doi: 10.1371/journal.pone.0212513.
7. Li Y., Wu D., Yang X., Zhou S. Immunotherapeutic Potential of T Memory Stem Cells. Front Oncol. 2021; 11: 723888. doi: 10.3389/fonc.2021.723888.
8. Kurachi M. CD8+ T cell exhaustion. Semin Immunopathol. 2019; 41(3): 327–37. doi: 10.1007/s00281-019-00744-5.
9. Raghu D., Xue H.H., Mielke L.A. Control of Lymphocyte Fate, Infection, and Tumor Immunity by TCF-1. Trends Immunol. 2019; 40(12):1149–62. doi: 10.1016/j.it.2019.10.006.
10. Beltra J.C., Manne S., Abdel-Hakeem M.S., Kurachi M., Giles J.R., Chen Z., Casella V., Ngiow S.F., Khan O., Huang Y.J., Yan P., Nzingha K., Xu W., Amaravadi R.K., Xu X., Karakousis G.C., Mitchell T.C., Schuch ter L.M., Huang A.C., Wherry E.J. Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms. Immunity. 2020; 52(5): 825–41. doi: 10.1016/j.immuni.2020.04.014.
11. Cai M.C., Zhao X., Cao M., Ma P., Chen M., Wu J., Jia C., He C., Fu Y., Tan L., Xue X., Yu Z., Zhuang G. T-cell exhaustion interrelates with immune cytolytic activity to shape the inflamed tumor microenvironment. J Pathol. 2020; 251(2): 147–59. doi: 10.1002/path.5435.
12. Tashireva L.A., Larionova I.V., Ermak N.A., Maltseva A.A., Livanos E.I., Kalinchuk A.Y., Stakheyeva M.N., Kolomiets L.A. Predicting immunotherapy efficacy in endometrial cancer: focus on the tumor microenvironment. Front Immunol. 2025; 15. doi: 10.3389/fimmu.2024.1523518.
13. Nechushkina, V.M., Kolomiets, L.A., Kravets, O.A., Morkhov, K.Yu., Novikova, E.G., Novikova, O.V., Tyulyandina, A.S., Ul’rikh, E.A., Fedenko, A.A., Khokhlova, S.V. Corpus uteri cancer and uterine sarcomas. Malignant tumours. 2024; 14(3s2-1(2)): 165–88. (in Russian). doi: 10.18027/2224-5057-2024-14-3s2-1.2-06. EDN: TMATCS
14. Chen W., Pandey M., Sun H., Rolong A., Cao M., Liu D., Wang J., Zeng L., Hunter A., Lin S. Development of a mechanism of action-reflective, dual target cell-based reporter bioassay for a bispecific monoclonal antibody targeting human CTLA-4 and PD-1. MAbs. 2021; 13(1): 1914359. doi: 10.1080/19420862.2021.1914359.
15. Gitto S., Natalini A., Antonangeli F., Di Rosa F. The Emerging Interplay Between Recirculating and Tissue-Resident Memory T Cells in Cancer Immunity: Lessons Learned From PD-1/PD-L1 Blockade Therapy and Remaining Gaps. Front Immunol. 2021; 12: 755304. doi: 10.3389/fimmu.2021.755304.
16. Hong W., Zhang L., Qi Y., Wang Y., Wang W. Impact of Chemotherapy on Circulating Lymphocyte Subsets in Lung Cancer Patients. Cancer Manag Res. 2024; 16: 1205–13. doi: 10.2147/CMAR.S475967.
17. Patysheva M., Frolova A., Larionova I., Afanas’ev S., Tarasova A., Cherdyntseva N., Kzhyshkowska J. Monocyte programming by cancer therapy. Front Immunol. 2022; 13: 994319. doi: 10.3389/fimmu.2022.994319.
18. Sharma A., Jasrotia S., Kumar A. Effects of Chemotherapy on the Immune System: Implications for Cancer Treatment and Patient Outcomes. Naunyn Schmiedebergs Arch Pharmacol. 2024; 397(5): 2551–66. doi: 10.1007/s00210-023-02781-2.
19. Italiani P., Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front Immunol. 2014; 5: 514. doi: 10.3389/fimmu.2014.00514.
20. Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020; 11(1): 3801. doi: 10.1038/s41467-020-17670-y.
21. Batorov E.V., Aristova V.A., Ushakova G.Yu., Sizikova S.A., Denisova V.V., Shevela E.Ya., Ostanin A.A., Chernykh E.R. Common Ɣ-chain cytokine receptors as functional phenotype markers of PD-1and TIM-3-positive T cells in multiple myeloma. Siberian Journal of Oncology. 2023; 22(1): 43–54. (in Russian). doi: 10.21294/1814-4861-2023-22-1-43-54. EDN: TPHZZE.
22. Kudryavtsev I.V., Borisov A.G., Vasilyeva E.V., Krobinets I.I., Savchenko A.A., Serebriakova M.K., Totolian Areg A. Phenotypic characterisation of peripheral blood cytotoxic t lymphocytes: regulatory and effector molecules. Medical Immunology. 2018; 20(2): 227–40. (in Russian). doi: 10.15789/1563-0625-2018-2-227-240. EDN: YNTEBR.
23. Lin E.Y., Li J.F., Gnatovskiy L., Deng Y., Zhu L., Grzesik D.A., Qian H., Xue X.N., Pollard J.W. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006; 66(23): 11238–46. doi: 10.1158/0008-5472.CAN-06-1278.
24. Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41(1): 49–61. doi: 10.1016/j.immuni.2014.06.010.
25. Lorusso D., Danesi R., Locati L.D., Masi G., De Giorgi U., Gadducci A., Pignata S., Sabbatini R., Savarese A., Valabrega G., Zamagni C., Colombo N. Corrigendum: Optimizing the use of lenvatinib in combination with pembrolizumab in patients with advanced endometrial carcinoma. Front Oncol. 2023; 13: 1232476. doi: 10.3389/fonc.2023.1232476.
26. Lichtfuss G.F., Hoy J., Rajasuriar R., Kramski M., Crowe S.M., Lewin S.R. Biomarkers of immune dysfunction following combination antiretroviral therapy for HIV infection. Biomark Med. 2011; 5(2): 171–86. doi: 10.2217/bmm.11.15.
27. Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010; 141(1): 39–51. doi: 10.1016/j.cell.2010.03.014.
28. Romero P., Zippelius A., Kurth I., Pittet M.J., Touvrey C., Iancu E.M., Corthesy P., Devevre E., Speiser D.E., Rufer N. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol. 2007; 178(7): 4112–19. doi: 10.4049/jimmunol.178.7.4112.
Review
For citations:
Stakheyeva M.N., Ermak N.A., Maltseva A.A., Livanos E.I., Kolomiets L.A., Cherdyntseva N.V. Influence of immune targeted therapy on immune system parameters in patients with endometrial cancer. Siberian journal of oncology. 2025;24(2):56-67. https://doi.org/10.21294/1814-4861-2025-24-2-56-67