Preview

Siberian journal of oncology

Advanced search

Evaluation of cell death after thermal ablation in patients with bone tumors

https://doi.org/10.21294/1814-4861-2025-24-3-38-49

Abstract

Introduction. Bone tumors are heterogeneous group of skeletal neoplasms characterized by frequent recurrences, aggressive clinical course and low survival rates. The development of new treatment methods continues to pose pressing challenges. Radical intraoperative thermal ablation (RIT) using high-temperature exposure is emerging as a new and promising strategy for organ-preserving treatment. This study focuses on the effect of thermal ablation (TA) on tumors.

Objective of the Study to assess the impact of TA (using the RIT method) on the viability of tumor cells.

Material and Methods. The study included 8 patients with bone tumors. Tumors underwent TA at a temperature of 60 °C for 30 minutes ex vivo. Apoptosis was studied in tumor tissue samples before and after TA. Apoptosis was assessed using two methods: flow cytometry and the TUNEL assay.

Results. The TA procedure developed by our scientific group represents a promising organ-preserving approach for treating malignant bone tumors. A temperature regime of 60 °C for 30 minutes was effective in initiating tumor cells death. This was confirmed by two independent methods – flow cytometry and TUNEL assay – which demonstrated a significant increase in the number of apoptotic cells immediately following the procedure and a notable rise in the number of cells exhibiting signs of late apoptosis one hour post thermal ablation. Therefore, the collected data confirm a pronounced antitumor effect immediately after implementing RIT.

Conclusion. The findings confirm that RIT is a viable organ-preserving method for treating bone tumors, meriting further investigation to expand its application in clinical practice.

About the Authors

P. K. Sitnikov
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Pavel K. Sitnikov - MD, Oncologist, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Junior Researcher, Tomsk State University of Control Systems and Radioelectronics (Tomsk, Russia). Researcher ID (WОS): ABI-8657-2022. Author ID (Scopus): 57215859018.

5, Kooperativny St., Tomsk, 634009; 40, Lenina Ave., Tomsk, 634050



E. S. Grigoryeva
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Evgeniya S. Grigoryeva - MD, PhD, Senior Researcher, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences (Tomsk, Russia). Researcher ID (WOS): C-8571-2012. Author ID (Scopus): 21934560600.

5, Kooperativny St., Tomsk, 634009



I. I. Anisenya
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Ilya I. Anisenya - MD, PhD, Senior Researcher, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Researcher, Tomsk State University of Control Systems and Radioelectronics (Tomsk, Russia). Researcher ID (WОS): D-8434-2012. Author ID (Scopus): 650764038.

5, Kooperativny St., Tomsk, 634009; 40, Lenina Ave., Tomsk, 634050



A. Yu. Kalinchuk
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Anna Yu. Kalinchuk - Junior Researcher, Cancer Research Institute, Researcher ID (WОS): ABF-1277-2022. Author ID (Scopus): 57797359600.

5, Kooperativny St., Tomsk, 634009



D. M. Loos
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Dmitriy M. Loos - MD, Pathologist, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Junior Researcher, Tomsk State University of Control Systems and Radioelectronics (Tomsk, Russia). Author ID (Scopus): 57224221490.

5, Kooperativny St., Tomsk, 634009; 40, Lenina Ave., Tomsk, 634050



R. V. Zelchan
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Roman V. Zelchan - MD, DSc, Senior Researcher, Cancer Research Institute, Russia). Researcher ID (WОS): AAB-4884-2021. Author ID (Scopus): 56901332100.

5, Kooperativny St., Tomsk, 634009



S. A. Tabakaev
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Stanislav A. Tabakaev, MD, PhD, Junior Researcher, Cancer Research Institute, Researcher ID (WОS): AAY-3354-2021. Author ID (Scopus): 57214091193.

5, Kooperativny St., Tomsk, 634009



V. V. Pakhmurina
Tomsk State University of Control Systems and Radioelectronics; Siberian State Medical University, Ministry of Health of Russia
Russian Federation

Victoria V. Pakhmurina - Employee Lab., Tomsk State University of Control Systems and Radioelectronics; Junior Researcher, Siberian State Medical University, Ministry of Health of Russia (Tomsk, Russia). Researcher ID (WОS): KZU-8010-2024. Author ID (Scopus): 57222719756.

40, Lenina Ave., Tomsk, 634050; 2, Moskovsky trakt, Tomsk, 634050



S. Yu. Matyushkov
Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Sergey Yu. Matyushkov - Junior Researcher.

40, Lenina Ave., Tomsk, 634050



D. O. Pakhmurin
Tomsk State University of Control Systems and Radioelectronics; Siberian State Medical University, Ministry of Health of Russia
Russian Federation

Denis O. Pakhmurin - PhD, Associate Professor, Chief Lab., Tomsk State University of Control Systems and Radioelectronics; Associate Professor, Siberian State Medical University, Ministry of Health of Russia. Researcher ID (WОS): JUV-3396-2023. Author ID (Scopus): 56100011300.

40, Lenina Ave., Tomsk, 634050; 2, Moskovsky trakt, Tomsk, 634050



L. A. Tashireva
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Liubov A. Tashireva - MD, DSc, Chief Lab., Cancer Research Institute. Researcher ID (WОS): C-8222-2012. Author ID (Scopus): 55234960400.

5, Kooperativny St., Tomsk, 634009



References

1. Clézardin P., Coleman R., Puppo M., Ottewell P., Bonnelye E., Paycha F., Confavreux C.B., Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev. 2021; 101(3): 797–855. doi: 10.1152/physrev.00012.2019.

2. Panez-Toro I., Muñoz-García J., Vargas-Franco J.W., RenodonCornière A., Heymann M.F., Lézot F., Heymann D. Advances in Osteosarcoma. Curr Osteoporos Rep. 2023; 21(4): 330–43. doi: 10.1007/s11914-023-00803-9.

3. Sorteberg A.L., Ek L., Lilienthal I., Herold N. Immunotherapy of Osteosarcoma. In: Handbook of Cancer and Immunology. Eds. N. Rezaei. Springer, Cham. 2023. doi: 10.1007/978-3-030-80962-1_236-1

4. van Praag Veroniek V.M., Rueten-Budde A.J., Ho V., Dijkstra P.D.S.; Study group Bone and Soft tissue tumours (WeBot); Fiocco M., van de Sande M.A.J. Incidence, outcomes and prognostic factors during 25 years of treatment of chondrosarcomas. Surg Oncol. 2018; 27(3): 402–8. doi: 10.1016/j.suronc.2018.05.009.

5. Miwa S., Yamamoto N., Hayashi K., Takeuchi A., Igarashi K., Tsuchiya H. Therapeutic Targets and Emerging Treatments in Advanced Chondrosarcoma. Int J Mol Sci. 2022; 23(3): 1096. doi: 10.3390/ijms23031096.

6. Brown H.K., Schiavone K., Gouin F., Heymann M.F., Heymann D. Biology of Bone Sarcomas and New Therapeutic Developments. Calcif Tissue Int. 2018; 102(2): 174–95. doi: 10.1007/s00223-017-0372-2.

7. Zöllner S.K., Amatruda J.F., Bauer S., Collaud S., de Álava E., DuBois S.G., Hardes J., Hartmann W., Kovar H., Metzler M., Shulman D.S., Streitbürger A., Timmermann B., Toretsky J.A., Uhlenbruch Y., Vieth V., Grünewald T.G.P., Dirksen U. Ewing Sarcoma–Diagnosis, Treatment, Clinical Challenges and Future Perspectives. J Clin Med. 2021; 10(8): 1685. doi: 10.3390/jcm10081685.

8. Noeuveglise M., Tessier W., Barthoulot M., Decanter G., Cayeux A., Marin H., Lemoine-Gobert P., Aymes E., Taieb S., Fayard C., Beaujot J., Robin Y.M., Lartigau E.F., Penel N., Cordoba A. Preoperative versus postoperative radiotherapy for localized soft tissue sarcoma treated with curative intent in a French tertiary center “SARCLOC”. BMC Cancer. 2024; 24(1): 1550. doi: 10.1186/s12885-024-13243-0.

9. Serban B., Popa M.I.G., Cursaru A., Cretu B., Iacobescu G.L., Cirstoiu C., Iordache S. Enhancing Diagnosis and Prognosis by Assessing the Clinical, Morphological, and Behavior Aspects in Soft Tissue Sarcomas. Cureus. 2024; 16(7). doi: 10.7759/cureus.64025.

10. Bartelstein M.K., Boland P.J. Fifty years of bone tumors. J Surg Oncol. 2022; 126(5): 906–12. doi: 10.1002/jso.27027.

11. Jeys L., Morris G., Evans S., Stevenson J., Parry M., Gregory J. Surgical Innovation in Sarcoma Surgery. Clin Oncol (R Coll Radiol). 2017; 29(8): 489–99. doi: 10.1016/j.clon.2017.04.003.

12. Ajithkumar T.V., Hatcher H. Multidisciplinary Management of Sarcomas Where Are We Now? Clin Oncol (R Coll Radiol). 2017; 29(8): 467–70. doi: 10.1016/j.clon.2017.05.004.

13. Thway K., Noujaim J., Jones R.L., Fisher C. Advances in the Pathology and Molecular Biology of Sarcomas and the Impact on Treatment. Clin Oncol (R Coll Radiol). 2017; 29(8): 471–80. doi: 10.1016/j.clon.2017.02.010.

14. Yi G.Y., Kim M.J., Kim H.I., Park J., Baek S.H. Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants (Basel). 2022; 11(4): 625. doi: 10.3390/antiox11040625.

15. Righini M.F., Durham A., Tsoutsou P.G. Hyperthermia and radiotherapy: physiological basis for a synergistic effect. Front Oncol. 2024; 14: 1428065. doi: 10.3389/fonc.2024.1428065.

16. Logghe T., van Zwol E., Immordino B., van den Cruys K., Peeters M., Giovannetti E., Bogers J. Hyperthermia in Combination with Emerging Targeted and Immunotherapies as a New Approach in Cancer Treatment. Cancers (Basel). 2024; 16(3): 505. doi: 10.3390/cancers16030505.

17. Wu J., Zhou Z., Huang Y., Deng X., Zheng S., He S., Huang G., Hu B., Shi M., Liao W., Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (2020). 2024; 5(10): e746. doi: 10.1002/mco2.746.

18. Zhu W., Pan S., Zhang J., Xu J., Zhang R., Zhang Y., Fu Z., Wang Y., Hu C., Xu Z. The role of hyperthermia in the treatment of tumor. Crit Rev Oncol Hematol. 2024; 204: 104541. doi: 10.1016/j.critrevonc.2024.104541.

19. Kok H.P., Cressman E.N.K., Ceelen W., Brace C.L., Ivkov R., Grüll H., Ter Haar G., Wust P., Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia. 2020; 37(1): 711–41. doi: 10.1080/02656736.2020.1779357.

20. Bazzocchi A., Aparisi Gómez M.P., Taninokuchi Tomassoni M., Napoli A., Filippiadis D., Guglielmi G. Musculoskeletal oncology and thermal ablation: the current and emerging role of interventional radiology. Skeletal Radiol. 2023; 52(3): 447–59. doi: 10.1007/s00256-022-04213-3.

21. Yeo S.Y., Bratke G., Grüll H. High Intensity Focused Ultrasound for Treatment of Bone Malignancies-20 Years of History. Cancers (Basel). 2022; 15(1): 108. doi: 10.3390/cancers15010108.

22. Parvinian A., Thompson S.M., Schmitz J.J., Welch B.T., Hibbert R., Adamo D.A., Kurup A.N. Update on Percutaneous Ablation for Sarcoma. Curr Oncol Rep. 2024; 26(6): 601–13. doi: 10.1007/s11912024-01532-7.

23. Cazzato R.L., de Rubeis G., de Marini P., Dalili D., Koch G., Auloge P., Garnon J., Gangi A. Percutaneous microwave ablation of bone tumors: a systematic review. Eur Radiol. 2021; 31(5): 3530–41. doi: 10.1007/s00330-020-07382-8.

24. Anisenya I.I., Sitnikov P.K., Pakhmurin D.O., Pakhmurina V.V., Vasiliev N.V., Zelchan R.V., Bogoutdinova A.V., Tabakaev S.A., Khakimov Kh.I., Mitrichenko A.D. Radical intraoperative thermal ablation of osteogenic sarcoma: clinical observation. Bone and soft tissue sarcomas, tumors of the skin. 2023; 15(3): 34–45. (in Russian). doi: 10.17650/2782-36872023-15-3-34-45. EDN: SSEKRG.

25. Pakhmurin D.O., Pakhmurina V.V., Anisenya I.I., Sitnikov P.K. Experimental study of the temperature distribution in long tubular bones with a periossal arrangement of heaters. Siberian journal of oncology. 2023; 22(2): 65–75. (in Russian). doi: 10.21294/1814-4861-2023-22-2-65-75. EDN: TLRZUE.

26. Pakhmurin D., Pakhmurina V., Kashin A., Kulkov A., Khlusov I., Kostyuchenko E., Sidorov I., Anisenya I. Compressive strength characteristics of long tubular bones after hyperthermal ablation. Symmetry. 2022; 14(2): 303. doi: 10.3390/sym14020303.

27. Pakhmurin D., Pakhmurina V., Kashin A., Kulkov A., Khlusov I., Kostyuchenko E., Anisenya I.,. Sitnikov P., Porokhova E. Mechanical and Histological Characteristics of Human Tubular Bones after Hyperthermal Treatment. Symmetry. 2023; 15(1): 156. doi: 10.3390/sym15010156.

28. Gorokhova A.V., Nasibov T.F., Porokhova E.D., Bariev U.A., Nosov V.E., Pakhmurin D.O., Anisenya I.I., Sitnikov P.K., Khlusov I.A. Bone tissue status in early stages of recovery after thermal exposure. Morphology. 2024; 162(3): 298–315. (in Russian). doi: 10.17816/morph.634692. EDN: BTKQOR.

29. Galluzzi L., Vitale I., Aaronson S.A., et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018; 25(3): 486–541. doi: 10.1038/s41418-017-0012-4.

30. Thompson S.M., Schmitz J.J., Schmit G.D., Callstrom M.R., Kurup A.N. Image-Guided Thermal Ablative Therapies in the Treatment of Sarcoma. Curr Treat Options Oncol. 2017; 18(4): 25. doi: 10.1007/s11864-017-0465-1.

31. Bravo M., Fortuni B., Mulvaney P., Hofkens J., Uji-i H., Rocha S., Hutchison J.A. Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability. J Control Release. 2024; 751–77. doi: 10.1016/j.jconrel.2024.06.055.

32. Ryan A., Byrne C., Pusceddu C., Buy X., Tsoumakidou G., Filippiadis D. CIRSE Standards of Practice on Thermal Ablation of Bone Tumours. Cardiovasc Intervent Radiol. 2022; 45(5): 591–605. doi: 10.1007/s00270-022-03126-x.

33. Hannon G., Tansi F.L., Hilger I., Prina-Mello A. The effects of localized heat on the hallmarks of cancer. Adv Ther. 2021; 4(7): 2000267. doi: 10.1002/adtp.202000267.

34. Moreno-Loshuertos R., Marco-Brualla J., Meade P., SolerAgesta R., Enriquez J.A., Fernández-Silva P. How hot can mitochondria be? Incubation at temperatures above 43 °C induces the degradation of respiratory complexes and supercomplexes in intact cells and isolated mitochondria. Mitochondrion. 2023; 69: 83–94. doi: 10.1016/j.mito.2023.02.002.

35. Chakraborty S., Singh M., Pandita R.K., Singh V., Lo C.S.C., Leonard F., Horikoshi N., Moros E.G., Guha D., Hunt C.R., Chau E., Ahmed K.M., Sethi P., Charaka V., Godin B., Makhijani K., Scherthan H., Deck J., Hausmann M., Mushtaq A., Altaf M., Ramos K.S., Bhat K.M., Taneja N., Das C., Pandita T.K. Heat-induced SIRT1-mediated H4K16ac deacetylation impairs resection and SMARCAD1 recruitment to double strand breaks. iScience. 2022; 25(4): 104142. doi: 10.1016/j.isci.2022.104142.

36. Iba T., Helms J., Levi M., Levy J.H. Inflammation, coagulation, and cellular injury in heat-induced shock. Inflamm Res. 2023; 72(3): 463–73. doi: 10.1007/s00011-022-01687-8.

37. Eltzschig H.K., Eckle T. Ischemia and reperfusion--from mechanism to translation. Nat Med. 2011; 17(11): 1391–401. doi: 10.1038/ nm.2507.

38. Song X., Kim S.Y., Zhou Z., Lagasse E., Kwon Y.T., Lee Y.J. Hyperthermia enhances mapatumumab-induced apoptotic death through ubiquitin-mediated degradation of cellular FLIP(long) in human colon cancer cells. Cell Death Dis. 2013; 4(4): e577. doi: 10.1038/cddis.2013.104.

39. Xiao F., Liu B., Zhu Q.X. c-Jun N-terminal kinase is required for thermotherapy-induced apoptosis in human gastric cancer cells. World J Gastroenterol. 2012; 18(48): 7348–56. doi: 10.3748/wjg.v18.i48.7348.

40. Hou C.H., Lin F.L., Hou S.M., Liu J.F. Hyperthermia induces apoptosis through endoplasmic reticulum and reactive oxygen species in human osteosarcoma cells. Int J Mol Sci. 2014; 15(10): 17380–95. doi: 10.3390/ijms151017380.

41. Green D.R., Llambi F. Cell Death Signaling. Cold Spring Harb Perspect Biol. 2015; 7(12): a006080. doi: 10.1101/cshperspect.a006080.

42. Mohammed R.N., Khosravi M., Rahman H.S., Adili A., Kamali N., Soloshenkov P.P., Thangavelu L., Saeedi H., Shomali N., Tamjidifar R., Isazadeh A., Aslaminabad R., Akbari M. Correction: Anastasis: cell recovery mechanisms and potential role in cancer. Cell Commun Signal. 2022; 20(1): 91. doi: 10.1186/s12964-022-00914-3. Erratum for: Cell Commun Signal. 2022; 20(1): 81. doi: 10.1186/s12964-022-00880-w.

43. Majtnerová P., Roušar T. An overview of apoptosis assays detecting DNA fragmentation. Mol Biol Rep. 2018; 45(5): 1469–78. doi: 10.1007/s11033-018-4258-9.

44. Whiteside T.L. Apoptosis of immune cells in the tumor microenvironment and peripheral circulation of patients with cancer: implications for immunotherapy. Vaccine. 2002; 20s4: 46–51. doi: 10.1016/s0264-410x(02)00387-0.


Review

For citations:


Sitnikov P.K., Grigoryeva E.S., Anisenya I.I., Kalinchuk A.Yu., Loos D.M., Zelchan R.V., Tabakaev S.A., Pakhmurina V.V., Matyushkov S.Yu., Pakhmurin D.O., Tashireva L.A. Evaluation of cell death after thermal ablation in patients with bone tumors. Siberian journal of oncology. 2025;24(3):38-49. https://doi.org/10.21294/1814-4861-2025-24-3-38-49

Views: 83


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)