Preview

Siberian journal of oncology

Advanced search

Gene variants that may cause adverse drug reactions in non-Hodgkin’s lymphoma therapy: a genomic and bioinformatics approach

https://doi.org/10.21294/1814-4861-2025-24-3-50-64

Abstract

Introduction. Chemotherapy remains a cornerstone treatment for most non-Hodgkin lymphoma (NHL) patients, yet it is frequently associated with significant adverse effects that compromise their quality of life. Emerging evidence highlights that genetic factors, particularly single nucleotide polymorphisms (SNPs), play a critical role in determining individual variability in treatment responses and susceptibility to drug-related complications.

Aim of this study: to identify SNPs associated with chemotherapy-induced adverse events in NHL through advanced bioinformatics approaches, enabling personalized therapeutic strategies to mitigate risks.

Material abd Methods. This study leveraged the PharmGKB database to identify SNPs associated with Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. SNPs meeting inclusion criteria (Level of Evidence 1A-3, p<0.01) were prioritized for functional impact analysis using PolyPhen-2 scores. Data extraction and computational analysis utilized SNPnexus, HaploReg v4.2, Ensembl Genome Browser (GRCh37), and PharmGKB. The methodology employed a descriptive approach, relying exclusively on secondary data sources.

Results. This study identified 11 SNPs that may be important for hematological toxicity, liver damage, and nausea risk. These genes are SLC22A16, GSTP1, NAT2, ATM, ABCB1, CYP2B6, XRCC1, ERCC1, MUTYH PIK3R2, and PNPLA3. In terms of priority and risk, the most significant variants were rs738409 (PNPLA3), rs12210538 (SLC22A16), rs2229109 (ABCB1), and rs56022120 (PIK3R2). The distribution of SNP alleles is more common in European populations than in Asians or Africans.

Conclusion. For the first time, we found SNPs that indicate an increase in drug side effects. These SNPs rs738409, rs12210538, rs2229109 and rs56022120 increase the severity of NHL patients during chemotherapy. In order to ensure that these biomarkers can be used in clinical practice and to support the creation of precision medicine strategies, additional clinical validation is needed.

About the Authors

R. Gustinanda
Faculty of Pharmacy, Universitas Ahmad Dahlan
Indonesia

Rizky Gustinanda, Pharmacist.

Yogyakarta



L. M. Irham
Faculty of Pharmacy, Universitas Ahmad Dahlan; Faculty of Pharmacy, Silpakorn University
Indonesia

Lalu Muhammad Irham - PhD, Lecturer.

Yogyakarta, Nakhon



W. Supadmi
Faculty of Pharmacy, Universitas Ahmad Dahlan
Indonesia

Woro Supadmi - Associate Professor.

Yogyakarta



D. P. Amukti
Department of Pharmacy, Faculty of Health Science, Alma Ata University
Indonesia

Danang Prasetyaning Amukti - Pharmacist, Lecturer.

Yogyakarta



W. Adikusuma
Research Center for Computing, Research Organization for Electronics and Informatics, National Research and Innovation Agency (BRIN), Cibinong Science Center; Department of Pharmacy, Universitas Muhammadiyah Mataram
Indonesia

Wirawan Adikusuma - PhD, Researcher.

Cibinong, Mataram



R. Chong
Department of Chemistry and Biochemistry, University of California
United States

Rockie Chong - PhD.

Los Angeles



R. El Khair
Department Medical, Dr. Sardjito Central General Hospital
Indonesia

Riat El Khair - MD.

Yogyakarta



R. D. Satria
Department Medical, Dr. Sardjito Central General Hospital
Indonesia

Rahmat Dani Satria - MD.

Yogyakarta



B. C. Wirsahada
Department of Surgery, Faculty of Medicine, Universitas Muhammadiyah Surabaya
Indonesia

Brilliant Citra Wirsahada - MD.

Jawa Timur



References

1. Swerdlow S.H., Campo E., Pileri S.A., Harris N.L., Stein H., Siebert R., Advani R., Ghielmini M., Salles G.A., Zelenetz A.D., Jaffe E.S. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016; 127(20): 2375–90. doi: 10.1182/blood-2016-01-643569.

2. Pratap S., Scordino T.S. Molecular and cellular genetics of nonHodgkin lymphoma: Diagnostic and prognostic implications. Exp Mol Pathol. 2019; 106: 44–51. doi: 10.1016/j.yexmp.2018.11.008.

3. Siegel R.L., Kratzer T.B., Giaquinto A.N., Sung H., Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025; 75(1): 10–45. doi: 10.3322/caac.21871.

4. Shahid R., Gulzar R., Avesi L., Hassan S., Danish F., Mirza T. Immunohistochemical profile of Hodgkin and non-Hodgkin lymphoma. J Coll Physicians Surg Pak. 2016; 26(2): 103–7.

5. Abramson J.S. Transformative clinical trials in non-Hodgkin and Hodgkin lymphomas. Clin Lymphoma Myeloma Leuk. 2015; 15s: s141–46. doi: 10.1016/j.clml.2015.02.006.

6. Abbasi S., Totmaj M.A., Abbasi M., Hajazimian S., Goleij P., Behroozi J., Shademan B., Isazadeh A., Baradaran B. Chimeric antigen receptor T (CAR-T) cells: Novel cell therapy for hematological malignancies. Cancer Med. 2023; 12(7): 7844–58. doi: 10.1002/cam4.5551.

7. MacKenzie M., Hall R. Pharmacogenomics and pharmacogenetics for the intensive care unit: a narrative review. Can J Anaesth. 2017; 64(1): 45–64. English. doi: 10.1007/s12630-016-0748-1.

8. Conyers R., Devaraja S., Elliott D. Systematic review of pharmacogenomics and adverse drug reactions in paediatric oncology patients. Pediatr Blood Cancer. 2018; 65(4). doi: 10.1002/pbc.26937.

9. Ovejero-Benito M.C., Muñoz-Aceituno E., Reolid A., Saiz-Rodríguez M., Abad-Santos F., Daudén E. Pharmacogenetics and pharmacogenomics in moderate-to-severe psoriasis. Am J Clin Dermatol. 2018; 19(2): 209–22. doi: 10.1007/s40257-017-0322-9.

10. Crawford J., Herndon D., Gmitter K., Weiss J. The impact of myelosuppression on quality of life of patients treated with chemotherapy. Future Oncol. 2024; 20(21): 1515–30. doi: 10.2217/fon-2023-0513.

11. Yee S.W., Giacomini K.M. Emerging roles of the human Solute Carrier 22 family. Drug Metab Dispos. 2021; 50(9): 1193–210. doi: 10.1124/dmd.121.000702.

12. Jirkovská A., Karabanovich G., Kubeš J., Skalická V., Melnikova I., Korábečný J., Kučera T., Jirkovský E., Nováková L., Bavlovič Piskáčková H., Škoda J., Štěrba M., Austin C.A., Šimůnek T., Roh J. Relationship between ABCB1 gene polymorphisms and severe neutropenia in patients with breast cancer treated with doxorubicin/cyclophosphamide chemotherapy. Drug Metab Pharmacokinet. 2015; 30(2): 149–53. doi: 10.1016/j.dmpk.2014.09.009.

13. Pan J., Lu Y., Zhang S., Li Y., Sun J., Liu H.C., Gong Z., Huang J., Cao C., Wang Y., Li Y., Liu T. Differential changes in the pharmacokinetics of doxorubicin in diethylnitrosamine-induced hepatocarcinoma model rats. Xenobiotica. 2020; 50(10): 1251–57. doi: 10.1080/00498254.2020.1765049.

14. Faraji A., Dehghan Manshadi H.R., Mobaraki M., Zare M., Houshmand M. Association of ABCB1 and SLC22A16 gene polymorphisms with incidence of doxorubicin-induced febrile neutropenia: A survey of Iranian breast cancer patients. PLoS One. 2016; 11(12): e0168519. doi:10.1371/ journal.pone.0168519.

15. Lei X., Du L., Yu W., Wang Y., Ma N., Qu B. GSTP1 as a novel target in radiation induced lung injury. J Transl Med. 2021; 19(1): 297. doi: 10.1186/s12967-021-02978-0.

16. Hasni D., Siregar K.B., Lim H. The influence of glutathion Stransferase P-1 polymorphism A313G rs1695 on the susceptibility to cyclophosphamide hematologic toxicity in Indonesian patients. Med J Indones. 2016; 25(2): 118–26. doi: 10.13181/mji.v25i2.1308.

17. Hajdinák P., Szabó M., Kiss E., Veress L., Wunderlich L., Szarka A. Genetic polymorphism of GSTP-1 affects cyclophosphamide treatment of autoimmune diseases. Molecules. 2020; 25(7): 1542. doi: 10.3390/molecules25071542.

18. Tecza K., Pamula-Pilat J., Lanuszewska J., Butkiewicz D., Grzybowska E. Pharmacogenetics of toxicity of 5-fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer patients. Oncotarget. 2018; 9(10): 9114–36. doi: 10.18632/oncotarget.24148.

19. Sugishita M., Imai T., Kikumori T., Mitsuma A., Shimokata T., Shibata T., Morita S., Inada-Inoue M., Sawaki M., Hasegawa Y., Ando Y. Pharmacogenetic association between GSTP1 genetic polymorphism and febrile neutropenia in Japanese patients with early breast cancer. Breast Cancer. 2016; 23(2): 195–201. doi: 10.1007/s12282-014-0547-x.

20. Walls K.M., Hong K.U., Hein D.W. Induction of glucose production by heterocyclic amines is dependent on. Toxicol Lett. 2023; 383: 192–95. doi: 10.1016/j.toxlet.2023.07.002.

21. Khrunin A.V., Khokhrin D.V., Moisseev A.A., Gorbunova V.A., Limborska S.A. Pharmacogenomic assessment of cisplatin-based chemo therapy outcomes in ovarian cancer. Pharmacogenomics. 2014; 15(3): 329–37. doi: 10.2217/pgs.13.237.

22. Bagdasaryan A.A., Chubarev V.N., Smolyarchuk E.A., Drozdov V.N., Krasnyuk I.I., Liu J., Fan R., Tse E., Shikh E.V., Sukocheva O.A. Pharmacogenetics of drug metabolism: The role of gene polymorphism in the regulation of doxorubicin safety and efficacy. Cancers (Basel). 2022; 14(21): 5436. doi: 10.3390/cancers14215436.

23. Yao S., Sucheston L.E., Zhao H., Barlow W.E., Zirpoli G., Liu S., Moore H.C., Thomas Budd G., Hershman D.L., Davis W., Ciupak G.L., Stewart J.A., Isaacs C., Hobday T.J., Salim M., Hortobagyi G.N., Gralow J.R., Livingston R.B., Albain K.S., Hayes D.F., Ambrosone C.B. Germline genetic variants in ABCB1, ABCC1 and ALDH1A1, and risk of hematological and gastrointestinal toxicities in a SWOG Phase III trial S0221 for breast cancer. Pharmacogenomics J. 2014; 14(3): 241–47. doi: 10.1038/tpj.2013.32.

24. Langmia I.M., Just K.S., Yamoune S., Brockmöller J., Masimirembwa C., Stingl J.C. CYP2B6 Functional Variability in Drug Metabolism and Exposure Across Populations–Implication for Drug Safety, Dosing, and Individualized Therapy. Front Genet. 2021; 12: 692234. doi: 10.3389/fgene.2021.692234.

25. Botros S.K.A., El Gharbawi N., Shahin G., Al Lithy H., El Sherbiny M. Impact of Cytochromes P450 3A4 and 2B6 gene polymorphisms on predisposition and prognosis of acute myeloid leukemia: an Egyptian casecontrol study. Egypt J Med Hum Genet. 2021; 22(1): 38. doi: 10.1186/s43042-021-00145-0.

26. Rocha V., Porcher R., Fernandes J.F., Filion A., Bittencourt H., Silva W. Jr., Vilela G., Zanette D.L., Ferry C., Larghero J., Devergie A., Ribaud P., Skvortsova Y., Tamouza R., Gluckman E., Socie G., Zago M.A. Association of drug metabolism gene polymorphisms with toxicities, graftversus-host disease and survival after HLA-identical sibling hematopoietic stem cell transplantation for patients with leukemia. Leukemia. 2009; 23(3): 545–56. doi: 10.1038/leu.2008.323.

27. Khrunin A.V., Moisseev A., Gorbunova V., Limborska S. Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J. 2010; 10(1): 54–61. doi: 10.1038/tpj.2009.45.

28. Avinash Tejasvi M.L., Maragathavalli G., Putcha U.K., Ramakrishna M., Vijayaraghavan R., Anulekha Avinash C.K. Impact of ERCC1 gene polymorphisms on response to cisplatin based therapy in oral squamous cell carcinoma (OSCC) patients. Indian J Pathol Microbiol. 2020; 63(4): 538–43. doi: 10.4103/IJPM.IJPM_964_19.

29. Raetz A.G., Banda D.M., Ma X., Xu G., Rajavel A.N., McKibbin P.L., Lebrilla C.B., David S.S. The DNA repair enzyme MUTYH potentiates cytotoxicity of the alkylating agent MNNG by interacting with abasic sites. J Biol Chem. 2020; 295(11): 3692–707. doi: 10.1074/jbc.RA119.010497.

30. Wiese W., Barczuk J., Racinska O., Siwecka N., Rozpedek-Kaminska W., Slupianek A., Sierpinski R., Majsterek I. PI3K/Akt/mTOR signaling pathway in blood malignancies-new therapeutic possibilities. Cancers (Basel). 2023; 15(21): 5297. doi: 10.3390/cancers15215297.

31. Bidadi B., Liu D., Kalari K.R., Rubner M., Hein A., Beckmann M.W., Rack B., Janni W., Fasching P.A., Weinshilboum R.M., Wang L. Pathwaybased analysis of genome-wide association data identified SNPs in HMMR as biomarker for chemotherapy – induced neutropenia in breast cancer patients. Front Pharmacol. 2018; 9: 158. doi: 10.3389/fphar.2018.00158.

32. Salari N., Darvishi N., Mansouri K., Ghasemi H., HosseinianFar M., Darvishi F., Mohammadi M. Association between PNPLA3 rs738409 polymorphism and nonalcoholic fatty liver disease: a systematic review and meta-analysis. BMC Endocr Disord. 2021; 21(1): 125. doi: 10.1186/s12902-021-00789-4.

33. Yang W., Karol S.E., Hoshitsuki K., Lee S., Larsen E.C., Winick N., Carroll W.L., Loh M.L., Raetz E.A., Hunger S.P., Winter S.S., Dunsmore K.P., Devidas M., Relling M.V., Yang J.J. Association of inherited genetic factors with drug-induced hepatic damage among children with acute lymphoblastic leukemia. JAMA Netw Open. 2022; 5(12): e2248803. doi: 10.1001/jamanetworkopen.2022.48803.

34. Rüschenbaum S., Schwarzkopf K., Friedrich-Rust M., Seeger F., Schoelzel F., Martinez Y., Zeuzem S., Bojunga J., Lange C.M. Patatin-like phospholipase domain containing 3 variants differentially impact metabolic traits in individuals at high risk for cardiovascular events. Hepatol Commun. 2018; 2(7): 798–806. doi: 10.1002/hep4.1183.

35. Shen J.H., Li Y.L., Li D., Wang N.N., Jing L., Huang Y.H. The rs738409 (I148M) variant of the PNPLA3 gene and cirrhosis: a meta-analysis. Journal Lipid Res. 2015; 56(1): 167–75. doi: 10.1194/jlr.M048777.

36. Mai Y., Yu J.J., Bartholdy B., Xu-Monette Z.Y., Knapp E.E., Yuan F., Chen H., Ding B.B., Yao Z., Das B., Zou Y., Young K.H., Parekh S., Ye B.H. An oxidative stress-based mechanism of doxorubicin cytotoxicity suggests new therapeutic strategies in ABC-DLBCL. Blood. 2016; 128(24): 2797–807. doi: 10.1182/blood-2016-03-705814.

37. Park J.H., Gail M.H., Weinberg C.R., Carroll R.J., Chung C.C., Wang Z., Chanock S.J., Fraumeni J.F. Jr., Chatterjee N. Distribution of allele frequencies and effect sizes and their interrelationships for common genetic susceptibility variants. Proc Natl Acad Sci USA. 2011; 108(44): 18026–31. doi: 10.1073/pnas.1114759108.

38. Ikeda M., Tsuji D., Yamamoto K., Kim Y.I., Daimon T., Iwabe Y., Hatori M., Makuta R., Hayashi H., Inoue K., Nakamichi H., Shiokawa M., Itoh K. Relationship between ABCB1 gene polymorphisms and severe neutropenia in patients with breast cancer treated with doxorubicin/cyclophosphamide chemotherapy. Drug Metab Pharmacokinet. 2015; 30(2): 149–53. doi: 10.1016/j.dmpk.2014.09.009.

39. Liu Y., Wang D., Li Z., Li X., Jin M., Jia N., Cui X., Hu G., Tang T., Yu Q. Pan-cancer analysis on the role of PIK3R1 and PIK3R2 in human tumors. Sci Rep. 2022; 12(1): 5924. doi: 10.1038/s41598-022-09889-0.

40. Ma'ruf M., Irham L.M., Adikusuma W., Sarasmita M.A., Khairi S., Purwanto B.D., Chong R., Mazaya M., Siswanto L.M.H. A genomic and bioinformatic-based approach to identify genetic variants for liver cancer across multiple continents. Genomics Inform. 2023; 21(4): e48. doi: 10.5808/gi.23067.


Review

For citations:


Gustinanda R., Irham L.M., Supadmi W., Amukti D.P., Adikusuma W., Chong R., Khair R.E., Satria R.D., Wirsahada B.C. Gene variants that may cause adverse drug reactions in non-Hodgkin’s lymphoma therapy: a genomic and bioinformatics approach. Siberian journal of oncology. 2025;24(3):50-64. https://doi.org/10.21294/1814-4861-2025-24-3-50-64

Views: 139


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)