Preview

Siberian journal of oncology

Advanced search

Strategy for the development of targeted agents for therapy of HER2-positive breast cancer

https://doi.org/10.21294/1814-4861-2025-24-3-135-148

Abstract

The objective of the study: to identify current strategies, achievements, and challenges in developing HER2-targeted therapeutic conjugates and assess clinical outcomes of therapies based on them.

Material and Methods. A total of 247 publications over the past 7 years were analyzed. Finally, 60 were selected for the review. The sources were searched in Scopus (n=35), PubMed (n=321) and WOS (n=91) databases. Electronic resources, such as PubMed Central (PMC), ScienceDirect and ResearchGate were used to obtain the full-text articles.

Results. The therapeutic potential of HER2-targeted conjugates has been confirmed in clinical trials for drugs, such as trastuzumab emtansine (T-DM1, Kadcyla®) and trastuzumab deruxtecan (T-DXd, Enhertu®). The development of new HER2-targeted conjugates involves several approaches to improve drug characteristics and therapeutic efficacy: increasing binding affinity to the target, simultaneous blocking of two HER2 domains, various mechanisms of cytotoxic effects on tumor cells (inhibition of tubulin, RNA polymerase II, and DNA topoisomerase I), enhancing the ratio of cytotoxic agents per antibody molecule and improving the conjugate stability in the bloodstream. Trastuzumab duocarmazine (SYD985), disitamab vedotin (RC48, Aidixi®), zanidatamab zovodotin (ZW49), ARX788 and MRG002 are all currently being studied in clinical trials.

Conclusion. Improvements in the design and understanding of drug-tumor interactions contribute to new clinical advances that may provide not only a survival advantage over traditional therapy, but also significantly improve the quality of life of patients with HER2-positive tumors.

About the Authors

V. V. Bodenko
Siberian State Medical University of the Ministry of Health of Russia; National Research Tomsk Polytechnic University; Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Vitalina V. Bodenko - Laboratory research assistant, Scientific and Educational Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University of the Ministry of Health of Russia; Engineer, Research Center of Oncotheranostics, Research School of Chemistry & Applied Biomedical Sciences, National Research TPU; Laboratory research assistant, Department of Nuclear Therapy and Diagnostics, Cancer Research Institute, Tomsk NRMC, RAS. Researcher ID (WOS): AEU-7385-2022. Author ID (Scopus): 57212209719.

2, Moskovsky trakt, Tomsk, 634050; 43А, Lenina St., Tomsk, 634034; 5, Kooperativny St., Tomsk, 634009



M. S. Larkina
Siberian State Medical University of the Ministry of Health of Russia; National Research Tomsk Polytechnic University
Russian Federation

Maria S. Larkina - DSc, Professor, Department of Pharmaceutical Analysis, Siberian State Medical University of the Ministry of Health of Russia; Professor, Research School of Chemistry & Applied Biomedical Sciences, National Research TPU. Author ID (Scopus): 57194542755.

2, Moskovsky trakt, Tomsk, 634050; 43А, Lenina St., Tomsk, 634034



M. S. Tretyakova
National Research Tomsk Polytechnic University; Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Maria S. Tretyakova - PhD, Junior Researcher, Research Center of Oncotheranostics, Research School of Chemistry & Applied Biomedical Sciences, National Research TPU; Junior Researcher, Laboratory of Cancer Progression Biology, Cancer Research Institute, NRMC, RAS. Researcher ID (WOS): AAL-6195-2021. Author ID (Scopus): 56967923800.

43А, Lenina St., Tomsk, 634034; 5, Kooperativny St., Tomsk, 634009



M. V. Belousov
Siberian State Medical University of the Ministry of Health of Russia; National Research Tomsk Polytechnic University
Russian Federation

Mikhail V. Belousov - DSc, Professor, Head of the Department of Pharmaceutical Analysis, Siberian State Medical University of the Ministry of Health of Russia; Professor, Research School of Chemistry & Applied Biomedical Sciences, National Research TPU. Researcher ID (WOS): Q-3827-2016. Author ID (Scopus): 55808990700.

2, Moskovsky trakt, Tomsk, 634050; 43А, Lenina St., Tomsk, 634034



V. I. Chernov
National Research Tomsk Polytechnic University; Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Vladimir I. Chernov - MD, DSc, Professor, Corresponding Member of the Russian Academy of Sciences, Deputy Director for Scientific and Innovative Activities, Head of the Department of Nuclear Therapy and Diagnostics, Cancer Research Institute, Tomsk NRMC, RAS; Leading Engineer, Laboratory No. 31 of Nuclear Research Reactor, National Research TPU. Researcher ID (WOS): B-6789-2016. Author ID (Scopus): 7201429550.

43А, Lenina St., Tomsk, 634034; 5, Kooperativny St., Tomsk, 634009



References

1. Cheng X. A Comprehensive Review of HER2 in Cancer Biology and Therapeutics. Genes (Basel). 2024; 15(7): 903. doi: 10.3390/ genes15070903.

2. Hamilton E., Shastry M., Shiller S.M., Ren R. Targeting HER2 heterogeneity in breast cancer. Cancer Treat Rev. 2021; 100: 102286. doi: 10.1016/j.ctrv.2021.102286.

3. Filho O.M., Viale G., Stein S., Trippa L., Yardley D.A., Mayer I.A., Abramson V.G., Arteaga C.L., Spring L.M., Waks A.G., Wrabel E., DeMeo M.K., Bardia A., Dell’Orto P., Russo L., King T.A., Polyak K., Michor F., Winer E.P., Krop I.E. Impact of HER2 Heterogeneity on Treatment Response of Early-Stage HER2-Positive Breast Cancer: Phase II Neoadjuvant Clinical Trial of T-DM1 Combined with Pertuzumab. Cancer Discov. 2021; 11(10): 2474–87. doi: 10.1158/2159-8290.CD-20-1557.

4. Swain S.M., Shastry M., Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023; 22(2): 101–26. doi: 10.1038/s41573-022-00579-0.

5. Verma S., Miles D., Gianni L., Krop I.E., Welslau M., Baselga J., Pegram M., Oh D.Y., Diéras V., Guardino E., Fang L., Lu M.W., Olsen S., Blackwell K.; Emilia Study Group. Trastuzumab emtansine for HER2positive advanced breast cancer. N Engl J Med. 2012; 367(19): 1783–91. doi: 10.1056/NEJMoa1209124.

6. Krop I.E., Kim S.-B., Martin A.G., LoRusso P.M., Ferrero J.-M., Badovinac-Crnjevic T., Hoersch S., Smitt M., Wildiers H. Trastuzumab emtansine versus treatment of physician’s choice in patients with previously treated HER2-positive metastatic breast cancer (TH3RESA): final overall survival results from a randomised open-label phase 3 trial. The Lancet Oncology. 2017; 18(6): 743–54. doi: 10.1016/S1470-2045(17)30313-3.

7. von Minckwitz G., Huang C.S., Mano M.S., Loibl S., Mamounas E.P., Untch M., Wolmark N., Rastogi P., Schneeweiss A., Redondo A., Fischer H.H., Jacot W., Conlin A.K., Arce-Salinas C., Wapnir I.L., Jackisch C., DiGiovanna M.P., Fasching P.A., Crown J.P., Wülfing P., Shao Z., Rota Caremoli E., Wu H., Lam L.H., Tesarowski D., Smitt M., Douthwaite H., Singel S.M., Geyer C.E., Jr. Katherine Investigators. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N Engl J Med. 2019; 380(7): 617–28. doi: 10.1056/NEJMoa1814017.

8. Hurvitz S.A., Martin M., Symmans W.F., Jung K.H., Huang C.S., Thompson A.M., Harbeck N., Valero V., Stroyakovskiy D., Wildiers H., pone M., Boileau J.F., Beckmann M.W., Afenjar K., Fresco R., Helms H.J., Xu J., Lin Y.G., Sparano J., Slamon D. Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2018; 19(1): 115–26. doi: 10.1016/s1470-2045(17)30716-7.

9. Perez E.A., Barrios C., Eiermann W., Toi M., Im Y.H., Conte P., Martin M., Pienkowski T., Pivot X., Burris H., Petersen J.A., Stanzel S., Strasak A., Patre M., Ellis P. Trastuzumab Emtansine With or Without Pertuzumab Versus Trastuzumab Plus Taxane for Human Epidermal Growth Factor Receptor 2-Positive, Advanced Breast Cancer: Primary Results From the Phase III Marianne Study. J Clin Oncol. 2017; 35(2): 141–48. doi: 10.1200/jco.2016.67.4887.

10. Saura C., Modi S., Krop I., Park Y.H., Kim S.B., Tamura K., Iwata H., Tsurutani J., Sohn J., Mathias E., Liu Y., Cathcart J., Singh J., Yamashita T. Trastuzumab deruxtecan in previously treated patients with HER2-positive metastatic breast cancer: updated survival results from a phase II trial. Ann. of Oncol. 2024; 35(3): 302–7. doi: 10.1016/j.annonc.2023.12.001.

11. Hurvitz S.A., Hegg R., Chung W.P., Im S.A., Jacot W., Ganju V., Chiu J.W.Y., Xu B., Hamilton E., Madhusudan S., Iwata H., Altintas S., Henning J.W., Curigliano G., Perez-Garcia J.M., Kim S.-B., Petry V., Huang C.S., Li W., Frenel J.S., Antolin S., Yeo W., Bianchini G., Loi S., Tsurutani J., Egorov A., Liu Y., Cathcart J., Ashfaque S., Cortés J. Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: updated results from DESTINY-Breast03, a randomised, open-label, phase 3 trial. The Lancet. 2023; 401(10371): 105–17. doi: 10.1016/S0140-6736(22)02420-5.

12. André F., Hee Park Y., Kim S.B., Takano T., Im S.A., Borges G., Lima J.P., Aksoy S., Gavila Gregori J., De Laurentiis M., Bianchini G., Roylance R., Miyoshi Y., Armstrong A., Sinha R., Ruiz Borrego M., Lim E., Ettl J., Yerushalmi R., Zagouri F., Duhoux F.P., Fehm T., Gambhire D., Cathcart J., Wu C., Chu C., Egorov A., Krop I. Trastuzumab deruxtecan versus treatment of physician’s choice in patients with HER2-positive metastatic breast cancer (Destiny-Breast02): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2023; 401(10390): 1773–85. doi: 10.1016/s0140-6736(23)00725-0.

13. A multi-centre, open-label, randomized clinical trial comparing the efficacy and safety of the antibody-drug conjugate SYD985 to physician’s choice in patients with HER2-positive unresectable locally advanced or metastatic breast cancer (TULIP). Bethesda (MD): National Library of Medicine (US). 2017. [Internet]. [cited 19.03.2025]. URL: https://clinicaltrials.gov/ct2/show/NCT03264664.

14. Shi F., Liu Y., Zhou X., Shen P., Xue R., Zhang M. Disitamab vedotin: a novel antibody-drug conjugates for cancer therapy. Drug Deliv. 2022; 29(1): 1335–44. doi: 10.1080/10717544.2022.2069883.

15. Wang J., Liu Y., Zhang Q., Li W., Feng J., Wang X., Fang J., Han Y., Xu B. Disitamab vedotin, a HER2-directed antibody-drug conjugate, in patients with HER2-overexpression and HER2-low advanced breast cancer: a phase I/Ib study. Cancer Commun (Lond). 2024; 44(7): 833–51. doi: 10.1002/cac2.12577.

16. Zhang J., Ji D., Shen W., Xiao Q., Gu Y., O’Shaughnessy J., Hu X. Phase I Trial of a Novel Anti-HER2 Antibody-Drug Conjugate, ARX788, for the Treatment of HER2-Positive Metastatic Breast Cancer. Clin Cancer Res. 2022: 1–10. doi: 10.1158/1078-0432.ccr-22-0456.

17. A phase 1 study of ZW49 in patients with locally advanced (unresectable) or metastatic HER2-expressing cancers. Bethesda (MD): National Library of Medicine (US). 2019. [Internet]. [cited 19.03.2025]. URL: https://clinicaltrials.gov/study/NCT03821233.

18. Michelon I., Dacoregio M.I., Vilbert M., Priantti J., do Rego Castro C.E., Vian L., Tarantino P., de Azambuja E., Cavalcante L. Antibodydrug conjugates in patients with advanced/metastatic HER2-low-expressing breast cancer: a systematic review and meta-analysis. Ther Adv Med Oncol. 2024; 16: 17588359241297079. doi: 10.1177/17588359241297079.

19. Li Q., Cheng Y., Tong Z., Liu Y., Wang X., Yan M., Chang J., Wang S., Du C., Li L., Wu C., Wang M., Wang Z., Wu Z., Wang X., Jin Y., Diao L., Sun Y., Zhang Y., Hui A.-M., Xu B. HER2-targeting antibody drug conjugate FS-1502 in HER2-expressing metastatic breast cancer: a phase 1a/1b trial. Nat Commun. 2024; 15(1): 5158. doi: 10.1038/s41467-024-48798-w.

20. A phase I clinical study to evaluate the safety, tolerability, pharmacokinetic characteristics, and preliminary efficacy of BL-M07D1 injection in patients with locally advanced or metastatic HER2-positive/ low-expression breast cancer and other solid tumors. Bethesda (MD): National Library of Medicine (US). 2022. [Internet]. [cited 19.03.2025]. URL: https://clinicaltrials.gov/study/NCT05461768.

21. Dan N., Setua S., Kashyap V.K., Khan S., Jaggi M., Yallapu M.M., Chauhan S.C. Antibody-Drug Conjugates for Cancer Therapy: Chemistry to Clinical Implications. Pharmaceuticals (Basel). 2018; 11(2): 32. doi: 10.3390/ph11020032.

22. Jin Y., Schladetsch M.A., Huang X., Balunas M.J., Wiemer A.J. Stepping forward in antibody-drug conjugate development. Pharmacol Ther. 2022; 229: 107917. doi: 10.1016/j.pharmthera.2021.107917.

23. Hoffmann R.M., Coumbe B.G.T., Josephs D.H., Mele S., Ilieva K.M., Cheung A., Tutt A.N., Spicer J.F., Thurston D.E., Crescioli S., Karagiannis S.N. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology. 2017; 7(3): e1395127. doi: 10.1080/2162402x.2017.1395127.

24. Musolino A., Gradishar W.J., Rugo H.S., Nordstrom J.L., Rock E.P., Arnaldez F., Pegram M.D. Role of Fcγ receptors in HER2-targeted breast cancer therapy. J Immunother Cancer. 2022; 10(1): e003171. doi: 10.1136/jitc-2021-003171.

25. Li F., Liu S. Focusing on NK cells and ADCC: A promising immunotherapy approach in targeted therapy for HER2-positive breast cancer. Front Immunol. 2022; 13: 1083462. doi: 10.3389/fimmu.2022.1083462.

26. Qi T., Cao Y. In Translation: FcRn across the Therapeutic Spectrum. Int J Mol Sci. 2021; 22(6): 3048. doi: 10.3390/ijms22063048.

27. Ward E.S., Ober R.J. Targeting FcRn to Generate AntibodyBased Therapeutics. Trends Pharmacol Sci. 2018; 39(10): 892–904. doi: 10.1016/j.tips.2018.07.007.

28. Leipold D., Prabhu S. Pharmacokinetic and Pharmacodynamic Considerations in the Design of Therapeutic Antibodies. Clin Transl Sci. 2019; 12(2): 130–39. doi: 10.1111/cts.12597.

29. Deonarain M.P., Yahioglu G. Current strategies for the discovery and bioconjugation of smaller, targetable drug conjugates tailored for solid tumor therapy. Expert Opin Drug Discov. 2021; 16(6): 613–24. doi: 10.1080/17460441.2021.1858050.

30. Tolmachev V., Orlova A., Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Semin Cancer Biol. 2021; 72: 185–97. doi: 10.1016/j.semcancer.2020.10.005.

31. Bragina O., Chernov V., Schulga A., Konovalova E., Hober S., Deyev S., Sörensen J., Tolmachev V. Direct Intra-Patient Comparison of Scaffold Protein-Based Tracers, [99mTc]Tc-ADAPT6 and [99mTc]Tc(HE)3-G3, for Imaging of HER2-Positive Breast Cancer. Cancers (Basel). 2023; 15(12): 3149. doi: 10.3390/cancers15123149.

32. Yin W., Xu T., Ding H., Zhang J., Bodenko V., Tretyakova M.S., Belousov M.V., Liu Y., Oroujeni M., Orlova A., Tolmachev V., Gräslund T., Vorobyeva A. Comparison of HER2-targeted affibody conjugates loaded with auristatinand maytansine-derived drugs. J Control Release. 2023; 355: 515–27. doi: 10.1016/j.jconrel.2023.02.005.

33. Xu T., Zhang J., Oroujeni M., Tretyakova M.S., Bodenko V., Belousov M.V., Orlova A., Tolmachev V., Vorobyeva A., Gräslund T. Effect of Inter-Domain Linker Composition on Biodistribution of ABD-Fused Affibody-Drug Conjugates Targeting HER2. Pharmaceutics. 2022; 14(3): 522. doi: 10.3390/pharmaceutics14030522.

34. Liu Y., Xu T., Vorobyeva A., Loftenius A., Bodenko V., Orlova A., Frejd F.Y., Tolmachev V. Radionuclide Therapy of HER2-Expressing Xenografts Using [(177)Lu]Lu-ABY-027 Affibody Molecule Alone and in Combination with Trastuzumab. Cancers (Basel). 2023; 15(9): 2409. doi: 10.3390/cancers15092409.

35. Liu Y., Güler R., Liao Y., Vorobyeva A., Widmark O., Meuleman T.J., Koijen A., van den Bos L.J., Naasz R., Bodenko V., Orlova A., Ekblad C., Tolmachev V., Frejd F.Y. Biologic Evaluation of a Heterodimeric HER2-Albumin Targeted Affibody Molecule Produced by Chemo-Enzymatic Peptide Synthesis. Pharmaceutics. 2022; 14(11): 2519. doi: 10.3390/ pharmaceutics14112519.

36. Sheyi R., de la Torre B.G., Albericio F. Linkers: An Assurance for Controlled Delivery of Antibody-Drug Conjugate. Pharmaceutics. 2022; 14(2). doi: 10.3390/pharmaceutics14020396.

37. Yaghoubi S., Karimi M.H., Lotfinia M., Gharibi T., Mahi-Birjand M., Kavi E., Hosseini F., Sineh Sepehr K., Khatami M., Bagheri N., Abdollahpour-Alitappeh M. Potential drugs used in the antibody–drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol. 2020; 235(1): 31–64. doi: 10.1002/jcp.28967.

38. Wang Z., Li H., Gou L., Li W., Wang Y. Antibody-drug conjugates: Recent advances in payloads. Acta Pharm Sin B. 2023; 13(10): 4025–59. doi: 10.1016/j.apsb.2023.06.015.

39. Pahl A., Lutz C. Hechler T. Amanitins and their development as a payload for antibody-drug conjugates. Drug Discovery Today: Technologies. 2018; 30: 85–89. doi: 10.1016/j.ddtec.2018.08.005.

40. Yamato M., Hasegawa J., Maejima T., Hattori C., Kumagai K., Watanabe A., Nishiya Y., Shibutani T., Aida T., Hayakawa I., Nakada T., Abe Y., Agatsuma T. DS-7300a, a DNA Topoisomerase I Inhibitor, DXdBased Antibody-Drug Conjugate Targeting B7-H3, Exerts Potent Antitumor Activities in Preclinical Models. Mol Cancer Ther. 2022; 21(4): 635–46. doi: 10.1158/1535-7163.mct-21-0554.

41. Treshalin M.I., Neborak E.V. Topoisomerases: features of the action, classification, cell functions, inhibition, anthrafurandion. Russian Journal of Oncology. 2018; 23(2): 60–70. (in Russian). doi: 10.18821/1028-9984-2018-23-2-60-70. EDN: NLIRIC

42. Takegawa N., Nonagase Y., Yonesaka K., Sakai K., Maenishi O., Ogitani Y., Tamura T., Nishio K., Nakagawa K., Tsurutani J. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int J Cancer. 2017; 141(8): 1682–89. doi: 10.1002/ijc.30870.

43. Gu Y., Wang Z., Wang Y. Bispecific antibody drug conjugates: Making 1+1>2. Acta Pharm Sin B. 2024; 14(5): 1965–86. doi: 10.1016/j.apsb.2024.01.009.

44. Fehling-Kaschek M., Peckys D.B., Kaschek D., Timmer J., Jonge N. Mathematical modeling of drug-induced receptor internalization in the HER2-positive SKBR3 breast cancer cell-line. Sci Rep. 2019; 9(1): 12709. doi: 10.1038/s41598-019-49019-x.

45. Gupta A., Michelini F., Shao H., Yeh C., Drago J.Z., Liu D., Rosiek E., Romin Y., Ghafourian N., Thyparambil S., Misale S., Park W., de Stanchina E., Janjigian Y.Y., Yaeger R., Li B.T., Chandarlapaty S. EGFRdirected antibodies promote HER2 ADC internalization and efficacy. Cell Rep Med. 2024; 5(11): 101792. doi: 10.1016/j.xcrm.2024.101792.

46. Li B.T., Michelini F., Misale S., Cocco E., Baldino L., Cai Y., Shifman S., Tu H.Y., Myers M.L., Xu C., Mattar M., Khodos I., Little M., Qeriqi B., Weitsman G., Wilhem C.J., Lalani A.S., Diala I., Freedman R.A., Lin N.U., Solit D.B., Berger M.F., Barber P.R., Ng T., Offin M., Isbell J.M., Jones D.R., Yu H.A., Thyparambil S., Liao W.L., Bhalkikar A., Cecchi F., Hyman D.M., Lewis J.S., Buonocore D.J., Ho A.L., Makker V., Reis-Filho J.S., Razavi P., Arcila M.E., Kris M.G., Poirier J.T., Shen R., Tsurutani J., Ulaner G.A., de Stanchina E., Rosen N., Rudin C.M., Scaltriti M. HER2Mediated Internalization of Cytotoxic Agents in ERBB2 Amplified or Mutant Lung Cancers. Cancer Discov. 2020; 10(5): 674–87. doi: 10.1158/2159-8290.cd-20-0215.

47. Diéras V., Miles D., Verma S., Pegram M., Welslau M., Baselga J., Krop I.E., Blackwell K., Hoersch S., Xu J., Green M., Gianni L. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2017; 18(6): 732–42. doi: 10.1016/s1470-2045(17)30312-1.

48. Ogitani Y., Aida T., Hagihara K., Yamaguchi J., Ishii C., Harada N., Soma M., Okamoto H., Oitate M., Arakawa S., Hirai T., Atsumi R., Nakada T., Hayakawa I., Abe Y., Agatsuma T. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin Cancer Res. 2016; 22(20): 5097–108. doi: 10.1158/1078-0432.ccr-15-2822.

49. Indini A., Rijavec E., Grossi F. Trastuzumab Deruxtecan: Changing the Destiny of HER2 Expressing Solid Tumors. Int J Mol Sci. 2021; 22(9): 4774. doi: 10.3390/ijms22094774.

50. Martín M., Pandiella A., Vargas-Castrillón E., Díaz-Rodríguez E., Iglesias-Hernangómez T., Martínez Cano C., Fernández-Cuesta I., Winkow E., Perelló M.F. Trastuzumab deruxtecan in breast cancer. Crit Rev Oncol/ Hematol. 2024; 198: 104355. doi: 10.1016/j.critrevonc.2024.104355.

51. Iwata T.N., Ishii C., Ishida S., Ogitani Y., Wada T., Agatsuma T. A HER2-Targeting Antibody–Drug Conjugate, Trastuzumab Deruxtecan (DS-8201a), Enhances Antitumor Immunity in a Mouse Model. Mol Cancer Ther. 2018; 17(7): 1494–1503. doi: 10.1158/1535-7163.mct-17-0749.

52. Keam S.J. Trastuzumab Deruxtecan: First Approval. Drugs. 2020; 80(5): 501–8. doi: 10.1007/s40265-020-01281-4.

53. Jackson E.B., Simmons C.E., Gelmon K.A. Destiny-Breast01 Trial: trastuzumab deruxtecan in previously treated HER2 positive breast cancer. Transl Breast Cancer Res. 2021; 2. doi: 10.21037/tbcr-21-20

54. Cortés J., Hurvitz S.A., Im S.-A., Iwata H., Curigliano G., Kim S.-B., Chiu J.W.Y., Pedrini J.L., Li W., Yonemori K., Bianchini G., Loi S., Borges G.S., Wang X., Bachelot T., Nakatani S., Ashfaque S., Liang Z., Egorov A., Hamilton E. Trastuzumab deruxtecan versus trastuzumab emtansine in HER2-positive metastatic breast cancer: long-term survival analysis of the DESTINY-Breast03 trial. Nat Med. 2024. 30(8): 2208–15. doi: 10.1038/s41591-024-03021-7.

55. Nagaraja Shastri P., Zhu J., Skidmore L., Liang X., Ji Y., Gu Y., Tian F., Yao S., Xia G. Nonclinical Development of Next-generation Site-specific HER2-targeting Antibody-drug Conjugate (ARX788) for Breast Cancer Treatment. Mol Cancer Ther. 2020; 19(9): 1822–32. doi: 10.1158/1535-7163.mct-19-0692.

56. Skidmore L., Sakamuri S., Knudsen N.A., Hewet A.G., Milutinovic S., Barkho W., Biroc S.L., Kirtley J., Marsden R., Storey K., Lopez I., Yu W., Fang S.Y., Yao S., Gu Y., Tian F. ARX788, a Site-specific Anti-HER2 Antibody-Drug Conjugate, Demonstrates Potent and Selective Activity in HER2-low and T-DM1-resistant Breast and Gastric Cancers. Mol Cancer Ther. 2020; 19(9): 1833–43. doi: 10.1158/1535-7163.mct-19-1004.

57. Zhu Y., Zhu X., Wei X., Tang C., Zhang W. HER2-targeted therapies in gastric cancer. Biochim Biophys Acta Rev Cancer. 2021; 1876(1): 188549. doi: 10.1016/j.bbcan.2021.188549.

58. Weisser N.E., Sanches M., Escobar-Cabrera E., O’Toole J., Whalen E., Chan P.W.Y., Wickman G., Abraham L., Choi K., Harbourne B., Samiotakis A., Rojas A.H., Volkers G., Wong J., Atkinson C.E., Baardsnes J., Worrall L.J., Browman D., Smith E.E., Baichoo P., Cheng C.W., Guedia J., Kang S., Mukhopadhyay A., Newhook L., Ohrn A., Raghunatha P., ZagoSchmitt M., Schrag J.D., Smith J., Zwierzchowski P., Scurll J.M., Fung V., Black S., Strynadka N.C.J., Gold M.R., Presta L.G., Ng G., Dixit S. An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat Commun. 2023; 14(1): 1394. doi: 10.1038/s41467-023-37029-3.

59. Li H., Zhang X., Xu Z., Li L., Liu W., Dai Z., Zhao Z., Xiao L., Li H., Hu C. Preclinical evaluation of MRG002, a novel HER2-targeting antibody-drug conjugate with potent antitumor activity against HER2positive solid tumors. Antib Ther. 2021; 4(3): 175–84. doi: 10.1093/abt/ tbab017.

60. Li L., Xu M.Z., Wang L., Jiang J., Dong L.H., Chen F., Dong K., Song H.F. Conjugating MMAE to a novel anti-HER2 antibody for selective targeted delivery. Eur Rev Med Pharmacol Sci. 2020; 24(24): 12929–37. doi: 10.26355/eurrev_202012_24196.


Review

For citations:


Bodenko V.V., Larkina M.S., Tretyakova M.S., Belousov M.V., Chernov V.I. Strategy for the development of targeted agents for therapy of HER2-positive breast cancer. Siberian journal of oncology. 2025;24(3):135-148. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-3-135-148

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)