Preview

Siberian journal of oncology

Advanced search

Contemporary insights into the molecular mechanisms of development and genetic susceptibility to pancreatic cancer

https://doi.org/10.21294/1814-4861-2025-24-3-149-161

Abstract

Background. Pancreatic cancer (PC) is an aggressive malignancy with a high mortality rate. Pancreatic ductal adenocarcinoma constitutes approximately 90 % of pancreatic cancers, and is frequently diagnosed at an advanced stage. The disease is distinguished by the presence of tumor micrometastasis prior to the onset of clinical symptoms, as well as rapid progression. There are currently no effective screening methods for the disease.

Aim of the study: analysis of available literature data about susceptibility genes and molecular mechanisms of PC.

Material and methods. The search for relevant sources was performed in the PubMed (NCBI), Elibrary, GoogleScholar, publications from January 2000 to December 2024 were included. Of the 959 papers analyzed, 60 were used to write the review, 27 of which were published in the last five years.

Results. Approximately 10 % of pancreatic adenocarcinoma patients are carriers of germinal pathogenic variants that cause an increased risk of PC. These variants predominantly occur in DNA damage repair genes. Tumor cells undergo complex multistep genetic alterations, and the accumulation of these changes facilitates the activation of various oncogenes that contribute to the progression of PC. Research in the field of molecular genetics makes it possible to identify groups of patients with certain genetic alterations who need to be prescribed targeted drugs.

Conclusion. This article provides an overview of current understanding of the genetic predisposition to PC. The functional/clinical significance of proteins involved in the pathogenesis of the disease was described. Genetic alterations of PC were discussed.

About the Authors

A. D. Speridonova
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences
Russian Federation

Assol D. Speridonova - Junior Researcher, Institute of Biochemistry and Genetics – Subdivision.

71, Prospect Oktyabrya St., Ufa, 450054



A. R. Zaripova
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences
Russian Federation

Aliya R. Zaripova – PhD, Researcher, Institute of Biochemistry and Genetics – Subdivision. Researcher ID (WOS): AAA-1893-2022. Author ID (Scopus): 57217061659.

71, Prospect Oktyabrya St., Ufa, 450054



I. R. Gilyazova
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences; Bashkir State Medical University
Russian Federation

Irina R. Gilyazova - PhD, Associate Professor, Senior Researcher, Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences; Associate Professor, Department of Medical Genetics and Fundamental Medicine, Senior Researcher, Institute of Urology and Clinical Oncology, Bashkir SMU. Author ID (Scopus): 15848327000.

71, Prospect Oktyabrya St., Ufa, 450054; 3, Lenina St., Ufa, 450008



M. A. Bermisheva
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences; Bashkir State Medical University
Russian Federation

Marina A. Bermisheva - DSc, Leading Researcher, Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences; Associate Professor, Department of Biology, Bashkir SMU. Researcher ID (WOS): J-6305-2018. Author ID (Scopus): 8775533800.

71, Prospect Oktyabrya St., Ufa, 450054; 3, Lenina St., Ufa, 450008



References

1. Klein A.P. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021; 18(7): 493–502. doi: 10.1038/s41575-021-00457-x.

2. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018; 68(1): 7–30. doi: 10.3322/caac.21442.

3. Matsubayashi H. Familial pancreatic cancer and hereditary syndromes: screening strategy for high-risk individuals. J Gastroenterol. 2011; 46(11): 1249–59. doi: 10.1007/s00535-011-0457-z.

4. Ferlay J., Ervik M., Lam F., Laversanne M., Colombet M., Mery L., Piñeros M., Znaor A., Soerjomataram I., Bray F. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. 2024. [Internet]. [cited 01.09.2024]. URL: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf.

5. Malignant neoplasms in Russia in 2021 (morbidity and mortality). Ed. A.D. Kaprin, V.V. Starinsky, A.O. Shakhzadova. Moscow, 2022. 252 p. (in Russian). ISBN: 978-5-85502-280-3.

6. Bailey P., Chang D.K., Nones K., Johns A.L., Patch A.M., Gingras M.C., Miller D.K., Christ A.N., Bruxner T.J.C., Quinn M.C., Nourse C., Murtaugh L.C., Harliwong I., Idrisoglu S., Manning S., Nourbakhsh E., Wani S., Fink L. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016; 531(7592): 47–52. doi: 10.1038/nature16965.

7. Yi Z., Wei S., Jin L., Jeyarajan S., Yang J., Gu Y., Kim H.S., Schechter S., Lu S., Paulsen M.T., Bedi K., Narayanan I.V., Ljungman M., Crawford H.C., Pasca di Magliano M., Ge K., Dou Y., Shi J. KDM6A regulates cell plasticity and pancreatic cancer progression by noncanonical activin pathway. Cell Mol Gastroenterol Hepatol. 2022; 13(2): 643–67. doi: 10.1016/j.jcmgh.2021.09.014.

8. Shibayama T., Hayashi A., Toki M., Kitahama K., Ho Y.-J., Kato K., Yamada T., Kawamoto S., Kambayashi K., Ochiai K., Gondo K., Okano N., Melchor J.P., Iacobuzio-Donahue C.A., Sakamoto Y., Hisamatsu T., Shibahara J. Combination immunohistochemistry for CK5/6, p63, GATA6, and HNF4a predicts clinical outcome in treatment-naïve pancreatic ductal adenocarcinoma. Sci Rep. 2024; 14(1): 15598. doi: 10.1038/s41598-024-65900-w.

9. Puleo F., Nicolle R., Blum Y., Cros J., Marisa L., Demetter P., Quertinmont E., Svrcek M., Elarouci N., Iovanna J., Franchimont D., Verset L., Galdon M.G., Devière J., de Reyniès A., Laurent-Puig P., Van Laethem J.L., Bachet J.B., Maréchal R. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology. 2018; 155(6): 1999–2013. doi: 10.1053/j.gastro.2018.08.033.

10. Collisson E.A., Bailey P., Chang D.K., Biankin A.V. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2019; 16(4): 207–20. doi: 10.1038/s41575-019-0109-y.

11. Llach J., Carballal S., Moreira L. Familial pancreatic cancer: current perspectives. Cancer Manag Res. 2020; 12: 743–58. doi: 10.2147/ CMAR.S172421

12. Romanova I.N., Grigoreva O.V., Efimova T.I. Pancreatic cancer. Some molecular and genetic mechanisms of oncogenesis as a target for therapy. Experimental and Clinical Gastroenterology. 2017; 138(2): 103–9. (in Russian). EDN: YHTWJX.

13. Lowery M.A., Wong W., Jordan E.J., Lee J.W., Kemel Y., Vijai J., Mandelker D., Zehir A., Capanu M., Salo-Mullen E., Arnold A.G., Yu K.H., Varghese A.M., Kelsen D.P., Brenner R., Kaufmann E., Ravichandran V., Mukherjee S., Berger M.F., Hyman D.M., Klimstra D.S., Abou-Alfa G.K., Tjan C., Covington C., Maynard H., Allen P.J., Askan G., Leach S.D., Iacobuzio-Donahue C.A., Robson M.E., Offit K., Stadler Z.K., O’Reilly E.M. Prospective Evaluation of Germline Alterations in Patients With Exocrine Pancreatic Neoplasms. J Natl Cancer Inst. 2018; 110(10): 1067–74. doi: 10.1093/jnci/djy024.

14. Gorodetska I., Kozeretska I., Dubrovska A. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J Cancer. 2019; 10(9): 2109–27. doi: 10.7150/jca.30410.

15. van Asperen C.J., Brohet R.M., Meijers-Heijboer E.J., Hoogerbrugge N., Verhoef S., Vasen H.F., Ausems M.G., Menko F.H., Gomez Garcia E.B., Klijn J.G., Hogervorst F.B., van Houwelingen J.C., van’t Veer L.J., Rookus M.A., van Leeuwen F.E.; Netherlands Collaborative Group on Hereditary Breast Cancer (HEBON). Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet. 2005; 42(9): 711–19. doi: 10.1136/jmg.2004.028829.

16. Wong W., Raufi A.G., Safyan R.A., Bates S.E., Manji G.A. BRCA mutations in pancreas cancer: spectrum, current management, challenges and future prospects. Cancer Manag Res. 2020; 12: 2731–42. doi: 10.2147/CMAR.S211151

17. Zhang F., Ma J., Wu J., Ye L., Cai H., Xia B., Yu X. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol. 2009; 19(6): 524–29. doi: 10.1016/j.cub.2009.02.018.

18. Mylavarapu S., Das A., Roy M. Role of BRCA Mutations in the Modulation of Response to Platinum Therapy. Front Oncol. 2018; 8: 16. doi: 10.3389/fonc.2018.00016.

19. Russell R., Perkhofer L., Liebau S., Lin Q., Lechel A., Feld F.M., Hessmann E., Gaedcke J., Güthle M., Zenke M., Hartmann D., von Figura G., Weissinger S.E., Rudolph K.L., Möller P., Lennerz J.K., Seufferlein T., Wagner M., Kleger A. Loss of ATM accelerates pancreatic cancer formation and epithelial-mesenchymal transition. Nat Commun. 2015; 6(1): 7677. doi: 10.1038/ncomms8677.

20. Armstrong S.A., Schultz C.W., Azimi-Sadjadi A., Brody J.R., Pishvaian M.J. ATM Dysfunction in Pancreatic Adenocarcinoma and Associated Therapeutic Implications. Mol Cancer Ther. 2019; 18(11): 1899–908. doi: 10.1158/1535-7163.MCT-19-0208.

21. Lee J.-H., Paull T.T. Cellular functions of the protein kinase ATM and their relevance to human disease. Nature Reviews Molecular Cell. Biology. 2021; 22: 796–814. doi: 10.1038/s41580-021-00394-2

22. Dinarvand P., Davaro E.P., Doan J.V., Ising M.E., Evans N.R., Phillips N.J., Lai J., Guzman M.A. Familial Adenomatous Polyposis Syndrome: An Update and Review of Extraintestinal Manifestations. Arch Pathol Lab Med. 2019; 143(11): 1382–98. doi: 10.5858/arpa.2018-0570-RA.

23. Meira-Júnior J.D., Yogolare G.G., Magalhães D.P., Namur G.N., Campos F.G., Segatelli V., Nahas S.C., Jukemura J. Pancreatic solid-pseudopapillary neoplasm in patients with familial adenomatous polyposis. Arq Bras Cir Dig. 2023; 35: e1718. doi: 10.1590/0102-672020220002e1718.

24. Parker T.W., Neufeld K.L. APC controls Wnt-induced β-catenin destruction complex recruitment in human colonocytes. Scientific Report. 2020; 10: 2957. doi: 10.1038/s41598-020-59899-z.

25. Zhang J., Wang Y., Jiang X., Chan H.C. Cystic fibrosis transmembrane conductance regulator-emerging regulator of cancer. Cell Mol Life Sci. 2018;75(10): 1737–56. doi: 10.1007/s00018-018-2755-6.

26. Lukasiak A., Zajac M. The distribution and role of the CFTR protein in the intracellular compartments. Membranes (Basel). 2021; 11(11): 804. doi: 10.3390/membranes11110804.

27. Bhattacharya R., Blankenheim Z., Scott P.M., Cormier R.T. CFTR and Gastrointestinal Cancers: An Update. J Pers Med. 2022; 12(6): 868. doi: 10.3390/jpm12060868.

28. McWilliams R.R., Petersen G.M., Rabe K.G., Holtegaard L.M., Lynch P.J., Bishop M.D., Highsmith W.E. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations and risk for pancreatic adenocarcinoma. Cancer. 2010; 116(1): 203–9. doi: 10.1002/cncr.24697.

29. Lowenfels A.B., Maisonneuve P., Whitcomb D.C. Risk factors for cancer in hereditary pancreatitis. International hereditary pancreatitis study group. Med Clin North Am. 2000; 84(3): 565–73. doi: 10.1016/s0025-7125(05)70240-6.

30. Qian Z.R., Rubinson D.A., Nowak J.A., Morales-Oyarvide V., Dunne R.F., Kozak M.M., Welch M.W., Brais L.K., Da Silva A., Li T., Li W., Masuda A., Yang J., Shi Y., Gu M., Masugi Y., Bui J., Zellers C.L., Yuan C., Babic A., Khalaf N., Aguirre A., Ng K., Miksad R.A., Bullock A.J., Chang D.T., Tseng J.F., Clancy T.E., Linehan D.C., Findeis-Hosey J.J., Doyle L.A., Thorner A.R., Ducar M., Wollison B., Laing A., Hahn W.C., Meyerson M., Fuchs C.S., Ogino S., Hornick J.L., Hezel A.F., Koong A.C., Wolpin B.M. Association of alterations in main driver genes with outcomes of patients with resected pancreatic ductal adenocarcinoma. JAMA Oncol. 2018; 4(3): e173420. doi: 10.1001/jamaoncol.2017.3420.

31. Horn I.P., Marks D.L., Koenig A.N., Hogenson T.L., Almada L.L., Goldstein L.E., Romecin Duran P.A., Vera R., Vrabel A.M., Cui G., Rabe K.G., Bamlet W.R., Mer G., Sicotte H., Zhang C., Li H., Petersen G.M., Fernandez-Zapico M.E. A rare germline CDKN2A variant (47T>G; p16-L16R) predisposes carriers to pancreatic cancer by reducing cell cycle inhibition. J Biol Chem. 2021; 296: 100634. doi: 10.1016/j.jbc.2021.100634.

32. Kimura H., Klein A.P., Hruban R.H., Roberts N.J. The Role of Inherited Pathogenic CDKN2A Variants in Susceptibility to Pancreatic Cancer. Pancreas. 2021; 50(8): 1123–30. doi: 10.1097/MPA.0000000000001888.

33. Potjer T.P., Schot I., Langer P., Heverhagen J.T., Wasser M.N.J.M., Slater E.P., Klöppel G., Morreau H.M., Bonsing B.A., de Vos tot Nederveen Cappel W.H., Bargello M., Gress T.M., Vasen H.F.A., Bartsch D.K. Variation in precursor lesions of pancreatic cancer among high-risk groups. Clin Cancer Res. 2013; 19(2): 442–49. doi: 10.1158/1078-0432.CCR-12-2730.

34. Matsubayashi H., Takaori K., Morizane C., Maguchi H., Mizuma M., Takahashi H., Wada K., Hosoi H., Yachida S., Suzuki M., Usui R., Furukawa T., Furuse J., Sato T., Ueno M., Kiyozumi Y., Hijioka S., Mizuno N., Terashima T., Mizumoto M., Kodama Y., Torishima M., Kawaguchi T., Ashida R., Kitano M., Hanada K., Furukawa M., Kawabe K., Majima Y., Shimosegawa T. Familial pancreatic cancer: Concept, management and issues. World J Gastroenterol. 2017;23(6): 935–48. doi: 10.3748/wjg.v23.i6.935.

35. Harinck F., Kluijt I., van der Stoep N., Oldenburg R.A., Wagner A., Aalfs C.M., Sijmons R.H., Poley J.-W., Kuipers E.J., Fockens P., van Os T.A.M., Bruno M.J. Indication for CDKN2A-mutation analysis in familial pancreatic cancer families without melanomas. J Med Genet. 2012; 49(6): 362–65. doi: 10.1136/jmedgenet-2011-100563.

36. Ghiorzo P., Fornarini G., Sciallero S., Battistuzzi L., Belli F., Bernard L., Bonelli L., Borgonovo G., Bruno W., De Cian F., Decensi A., Filauro M., Faravelli F., Gozza A., Gargiulo S., Mariette F., Nasti S., Pastorino L., Queirolo P., Savarino V., Varesco L., Scarrà G.B.; Genoa Pancreatic Cancer Study Group. CDKN2A is the main susceptibility gene in Italian pancreatic cancer families. J Med Genet. 2012; 49(3): 164–70. doi: 10.1136/jmedgenet-2011-100281.

37. Humphris J.L., Patch A.-M., Nones K. et al. Hypermutation In Pancreatic Cancer. Gastroenterology. 2017; 152(1): 68–74. doi: 10.1053/j.gastro.2016.09.060.

38. Naboka M.V., Garaev.T.I., Lyapustina O.S., V’yushkov D.M. Genetic features of the pathogenesis of pancreatic adenocarcinomas. Experimental and Clinical Gastroenterology. 2023; (3): 74–79. (in Russian). doi: 10.31146/1682-8658-ecg-211-3-74-79. EDN: VLLYSU.

39. Ligtenberg M.J.L., Kuiper R.P., Chan T.L., Goossens M., Hebeda K.M., Voorendt M., Lee T.Y.H., Bodmer D., Hoenselaar E., HendriksCornelissen S.J.B., Tsui W.Y., Kong C.K., Brunner H.G., van Kessel A.G., Yuen S.T., van Krieken J.H.J.M., Leung S.Y., Hoogerbrugge N. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet. 2009; 41(1): 112–17. doi: 10.1038/ng.283.

40. Gires O., Pan M., Schinke H., Canis M., Baeuerle P.A. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev. 2020; 39(3): 969–87. doi: 10.1007/s10555-020-09898-3.

41. Pishvaian M.J., Blais E.M., Brody J.R., Lyons E., DeArbeloa P., Hendifar A., Mikhail S., Chung V., Sahai V., Sohal D.P.S., Bellakbira S., Thach D., Rahib L., Madhavan S., Matrisian L.M., Petricoin E.F. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the Know Your Tumor registry trial. Lancet Oncol. 2020; 21(4): 508–18. doi: 10.1016/s1470-2045(20)30074-7.

42. Hegyi E., Sahin-Toth M. Genetic Risk in Chronic Pancreatitis: The Trypsin-Dependent Pathway. Dig Dis Sci. 2017; 62: 1692–701 doi: 10.1007/s10620-017-4601-3.

43. Zhan W., Shelton C.A., Greer P.J., Brand R.E., Whitcomb D.C. Germline Variants and Risk for Pancreatic Cancer: A Systematic Review and Emerging Concepts. Pancreas. 2018; 47(8): 924–36. doi: 10.1097/MPA.0000000000001136.

44. Gukovskaya A.S., Lerch M.M., Mayerle J., Sendler M., Ji B., Saluja A.K., Gorelick F.S., Gukovsky I. Trypsin in pancreatitis: The culprit, a mediator, or epiphenomenon? World J Gastroenterol 2024; 30(41): 4417–38 doi: 10.3748/wjg.v30.i41.4417.

45. Rebours V., Boutron-Ruault M.-C., Schnee M., Ferec C., Le Marechal C., Hentic O., Maire F., Hammel P., Ruszniewski P., Levy P. The natural history of hereditary pancreatitis: a national series. Gut. 2009; 58(1): 97–103. doi: 10.1136/gut.2008.149179.

46. Korsse S.E., Harinck F., van Lier M.G.F., Biermann K., Offerhaus G.J.A., Krak N., Looman C.W.N., van Veelen W., Kuipers E.J., Wagner A., Dekker E., Mathus-Vliegen E.M.H., Fockens P., van Leerdam M.E., Bruno M.J. Pancreatic cancer risk in Peutz-Jeghers syndrome patients: a large cohort study and implications for surveillance. J Med Genet. 2013; 50(1): 59–64. doi: 10.1136/jmedgenet-2012-101277.

47. Savelyeva Т.A., Pikunov D.Y., Kuzminov A.M., Tsukanov A.S. Peutz-Jeghers syndrome: what has been learned in 125 years of study? Coloproctology. 2021; 20(2): 85–96. (in Russian). doi: 10.33878/2073-7556-2021-20-2-85-96. EDN: VQFJZJ.

48. Zhang S., Yun D., Yang H., Eckstein M., Elbait G.D., Zhou Y., Lu Y., Yang H., Zhang J., Dörflein I., Britzen-Laurent N., Pfeffer S., Stemmler M.P., Dahl A., Mukhopadhyay D., Chang D., He H., Zeng S., Lan B., Frey B., Hampel C., Lentsch E., Gollavilli P.N., Büttner C., Ekici A.B., Biankin A., Schneider-Stock R., Ceppi P., Grützmann R., Pilarsky C. Roflumilast inhibits tumor growth and migration in STK11/LKB1 deficient pancreatic cancer. Cell Death Discovery. 2024; 10(1): 124. doi: 10.1038/s41420-024-01890-y.

49. Javadrashid D., Baghbanzadeh A., Derakhshani A., Leone P., Silvestris N., Racanelli V., Solimando A.G., Baradaran B. Pancreatic Cancer Signaling Pathways, Genetic Alterations, and Tumor Microenvironment: The Barriers Affecting the Method of Treatment. Biomedicines. 2021; 9(4): 373. doi: 10.3390/biomedicines9040373.

50. Zhuo F., Luo S., He W., Feng Z., Hu Y., Xu J., Wang Z., Xu J. The Role of Signaling Pathways in Pancreatic Cancer Targeted Therapy. Am J Clin Oncol. 2023; 46(3): 121–28. doi: 10.1097/COC.0000000000000979.

51. Golan T., Hammel P., Reni M., Van Cutsem E., Macarulla T., Hall M.J., Park J.O., Hochhauser D., Arnold D., Oh D.Y., ReinacherSchick A., Tortora G., Algül H., O’Reilly E.M., McGuinness D., Cui K.Y., Schlienger K., Locker G.Y., Kindler H.L. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019; 381: 317–27. doi: 10.1056/NEJMoa1903387.

52. Rebelatto T.F., Falavigna M., Pozarri M., Spada F., Cella C.A., Laffi A., Pellicori S., Fazio N. Should platinum-based chemotherapy be preferred for germline BReast CAncer genes (BRCA) 1 and 2-mutated pancreatic ductal adenocarcinoma (PDAC) patients? A systematic review and meta-analysis. Cancer Treat Rev. 2019; 80: 101895. doi: 10.1016/j.ctrv.2019.101895.

53. Park W., Chen J., Chou J.F., Varghese A.M., Yu K.H., Wong W., Capanu M., Balachandran V., McIntyre C.A., El Dika I., Khalil D.N., Harding J.J., Ghalehsari N., McKinnell Z., Chalasani S.B., Makarov V., Selenica P., Pei X., Lecomte N., Kelsen D.P., Abou-Alfa G.K., Robson M.E., Zhang L., Berger M.F., Schultz N., Chan T.A., Powell S.N., Reis-Filho J.S., Iacobuzio-Donahue C.A., Riaz N., O’Reilly E.M. Genomic Methods Identify Homologous Recombination Deficiency in Pancreas Adenocarcinoma and Optimize Treatment Selection. Clin Cancer Res. 2020; 26(13): 3239–47. doi: 10.1158/1078-0432.CCR-20-0418.

54. Singhi A.D., George B., Greenbowe J.R., Chung J., Suh J., Maitra A., Klempner S.J., Hendifar A., Milind J.M., Golan T., Brand R.E., Zureikat A.H., Roy S., Schrock A.B., Miller V.A., Ross J.S., Ali S.M., Bahary N. Real-Time Targeted Genome Profile Analysis of Pancreatic Ductal Adenocarcinomas Identifies Genetic Alterations That Might Be Targeted with Existing Drugs or Used as Biomarkers. Gastroenterology. 2019; 156(8): 2242–53. doi: 10.1053/j.gastro.2019.02.037.

55. Marabelle A., Le D.T., Ascierto P.A., Di Giacomo A.M., De JesusAcosta A., Delord J.P., Geva R., Gottfried M., Penel N., Hansen A.R., Piha-Paul S.A., Doi T., Gao B., Chung H.C., Lopez-Martin J., Bang Y.J., Frommer R.S., Shah M., Ghori R., Joe A. K., Pruitt S.K., Diaz L.A. Jr. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch RepairDeficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020; 38(1): 1–10. doi: 10.1200/JCO.19.02105.

56. Ott P.A., Bang Y.J., Piha-Paul S.A., Razak A.R.A., Bennouna J., Soria J.C., Rugo H.S., Cohen R.B., O’Neil B.H., Mehnert J.M., Lopez J., Doi T., van Brummelen E.M.J., Cristescu R., Yang P., Emancipator K., Stein K., Ayers M., Joe A.K., Lunceford J.K. T-Cell-Inflamed GeneExpression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated with Pembrolizumab Across 20 Cancers: KEYNOTE-028. J Clin Oncol. 2019; 37: 318–27. doi: 10.1200/JCO.2018.78.2276.

57. Terrero G., Datta J., Dennison J., Sussman D.A., Lohse I., Merchant N.B., Hosein P.J. Ipilimumab/Nivolumab Therapy in Patients With Metastatic Pancreatic or Biliary Cancer With Homologous Recombination Deficiency Pathogenic Germline Variants. JAMA Oncol. 2022; 8: 938–40. doi:10.1001/jamaoncol.2022.0611.

58. Reiss K.A., Mick R., Teitelbaum U., O’Hara M., Schneider C., Massa R., Karasic T., Tondon R., Onyiah C., Gosselin M.K., Donze A., Domchek S.M., Vonderheide R.H. Niraparib plus nivolumab or niraparib plus ipilimumab in patients with platinum-sensitive advanced pancreatic cancer: a randomised, phase 1b/2 trial. Lancet Oncol. 2022; 23: 1009–20. doi: 10.1016/s1470-2045(22)00369-2.

59. Dreyer S.B., Chang D.K., Bailey P., Biankin A.V. Pancreatic Cancer Genomes: Implications for Clinical Management and Therapeutic Development. Clin Cancer Res. 2017; 23(7): 1638–46 doi.org/10.1158/1078-0432.CCR-16-2411.

60. Gupta M., Sherrow C., Krone M.E., Blais E.M., Pishvaian M.J., Petricoin E.F., Matrisian L.M., DeArbeloa P., Gregory G., Brown A., Zalewski O., Prinzing G., Roche C., Kanehira K., Mukherjee S., Iyer R., Fountzilas C. Targeting the NTRK Fusion Gene in Pancreatic Acinar Cell Carcinoma: A Case Report and Review of the Literature. J Natl Compr Canc Netw. 2021; 19(1): 10–15. doi: 10.6004/jnccn.2020.7641.


Review

For citations:


Speridonova A.D., Zaripova A.R., Gilyazova I.R., Bermisheva M.A. Contemporary insights into the molecular mechanisms of development and genetic susceptibility to pancreatic cancer. Siberian journal of oncology. 2025;24(3):149-161. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-3-149-161

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)