Preview

Siberian journal of oncology

Advanced search

Current trends in the field of photodynamic therapy of osteogenic sarcoma (results of pharmaceutical and experimental studies)

https://doi.org/10.21294/1814-4861-2025-24-3-162-171

Abstract

The aim of the study was to summarize current trends in developing photodynamic therapy strategies for osteogenic sarcoma.

Material and Methods. We searched and analyzed 153 publications available from MedLine, Scopus, WoS and RSCI databases over the past 7 years. Of these, 60 were included in the review.

Results. Traditional methods of treating malignant bone tumors, such as surgery, chemotherapy and radiation therapy, have significant disadvantages, including complications, serious side effects and low efficacy. Instead, nanoparticles represent a new platform for the treatment and diagnosis of malignant bone tumors. Recent studies have shown that nanoparticles can be used to treat and diagnose various types of bone tumors, including osteogenic sarcoma. This is due to their unique structure, ability to efficiently deliver drugs, and bioavailability. In addition, the surface of nanoparticles can be modified with various molecules or materials, allowing them to acquire unique properties. For example, nanoparticles can be loaded with chemotherapeutic drugs or genes, allowing their release to be controlled and precisely targeted to osteosarcoma. Nanoparticles can also be used for photodynamic therapy. In addition, the incorporation of contrast agents or fluorescent probes into nanoparticles can improve imaging capabilities and monitor the treatment process in real time. This not only makes it possible to evaluate the effectiveness of photodynamic therapy, but also to adjust the treatment plan to achieve the best results for each patient.

Conclusion. Multifunctional nanoparticles are a promising tool for an individual approach to the treatment of osteogenic sarcoma using photodynamic therapy and improving the prognosis for patients.

About the Authors

Yu. S. Romanko
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia; Academy of Postgraduate Education, FSCC of FMBA of Russia
Russian Federation

Yuri S. Romanko - MD, DSc, Professor of the Department, I.M. Sechenov First MSMU of the Ministry of Health of Russia; Professor of the Department, Academy of Postgraduate Education, FSCC of FMBA of Russia. Researcher ID (WOS): L-5965-2014. Author ID (Scopus): 7801463724.

8/2, Trubetskaya St., Moscow, 119991; 91, Volokolamskoe shosse, Moscow, 125371



I. V. Reshetov
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia; Academy of Postgraduate Education, FSCC of FMBA of Russia; S.Y. Witte Moscow University
Russian Federation

Igor V. Reshetov - MD, Professor, Full Member of RAS, Director of the Institute, I.M. Sechenov First MSMU of the Ministry of Health of Russia; Head of the Department, Academy of Postgraduate Education, FSCC of FMBA of Russia; Scientific Director of the faculty, S.Y. Witte Moscow University (Moscow, Russia). Author ID (Scopus): 6701353127.

8/2, Trubetskaya St., Moscow, 119991; 91, Volokolamskoe shosse, Moscow, 125371; 12/1, 2nd Kozhukhovsky Drive, Moscow, 115432



References

1. Palmerini E., Reichardt P., Hall K.S., Bertulli R., Bielack S.S., Comandone A., Egerer G., Hansmeier A., Kevric M., Carretta E., Hansson L., Jebsen N., Eriksson M., Bruland Ø.S., Donati D.M., Ibrahim T., Smeland S., Ferrari S. Outcome of rare primary malignant bone sarcoma treated with multimodal therapy: Results from the EUROpean Bone Over 40 Sarcoma Study (EURO-B.O.S.S.). Cancer. 2023; 129(22): 3564–73. doi: 10.1002/cncr.34964.

2. Fan G., Zhu Y., Zhu H., Yu L., Wang Z., Zhai C., Zhou G., Zhao J., Wang Y. Identification of RALA as a Therapeutic Target and Prognostic Predictor of Osteosarcoma. Biomed Res Int. 2023. doi: 10.1155/2023/115076f8.

3. Hindiskere S., Staals E., Donati D.M., Manfrini M. What Is the Survival of the Telescope Allograft Technique to Augment a Short Proximal Femur Segment in Children After Resection and Distal Femur Endoprosthesis Reconstruction for a Bone Sarcoma? Clin Orthop Relat Res. 2021; 479(8): 1780–90. doi: 10.1097/CORR.0000000000001686.

4. He X., Lu M., Zou C., Li Z., Gong T., Kenmegne G.R., Wang Y., Luo Y., Zhou Y., Min L., Tu C. Three-dimensional printed custom-made modular talus prosthesis in patients with talus malignant tumor resection. J Orthop Surg Res. 2024; 19(1): 273. doi: 10.1186/s13018-024-04728-6.

5. Ippolito J.A., Martinez M., Thomson J.E., Willis A.R., Beebe K.S., Patterson F.R., Benevenia J. Complications following allograft reconstruction for primary bone tumors: Considerations for management. J Orthop. 2018; 16(1): 49–54. doi: 10.1016/j.jor.2018.12.013.

6. Yu T., Jiang W., Wang Y., Zhou Y., Jiao J., Wu M. Chimeric antigen receptor T cells in the treatment of osteosarcoma (Review). Int J Oncol. 2024; 64(4): 40. doi: 10.3892/ijo.2024.5628.

7. Sayles L.C., Breese M.R., Koehne A.L., Leung S.G., Lee A.G., Liu H.Y., Spillinger A., Shah A.T., Tanasa B., Straessler K., Hazard F.K., Spunt S.L., Marina N., Kim G.E., Cho S.J., Avedian R.S., Mohler D.G., Kim M.O., DuBois S.G., Hawkins D.S., Sweet-Cordero E.A. GenomeInformed Targeted Therapy for Osteosarcoma. Cancer Discov. 2019; 9(1): 46–63. doi: 10.1158/2159-8290.CD-17-1152.

8. Duffaud F., Mir O., Boudou-Rouquette P., Piperno-Neumann S., Penel N., Bompas E., Delcambre C., Kalbacher E., Italiano A., Collard O., Chevreau C., Saada E., Isambert N., Delaye J., Schiffler C., Bouvier C., Vidal V., Chabaud S., Blay J.Y.; French Sarcoma Group. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2019; 20(1): 120–33. doi: 10.1016/S1470-2045(18)30742-3.

9. Long G.V., Stephen Hodi F., Lipson E.J., Schadendorf D., Ascierto P.A., Matamala L., Salman P., Castillo Gutiérrez E., Rutkowski P., Gogas H.J., Lao C.D., Janoski De Menezes J., Dalle S., Arance A., Grob J.J., Keidel S., Shaikh A., Sobiesk A.M., Dolfi S., Tawbi H.A. Overall Survival and Response with Nivolumab and Relatlimab in Advanced Melanoma. NEJM Evid. 2023; 2(4). doi: 10.1056/EVIDoa2200239.

10. Reck M., Rodríguez-Abreu D., Robinson A.G., Hui R., Csőszi T., Fülöp A., Gottfried M., Peled N., Tafreshi A., Cuffe S., O’Brien M., Rao S., Hotta K., Leiby M.A., Lubiniecki G.M., Shentu Y., Rangwala R., Brahmer J.R.; KEYNOTE-024 Investigators. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2016; 375(19): 1823–33. doi: 10.1056/NEJMoa1606774.

11. Ferris R.L., Blumenschein G. Jr., Fayette J., Guigay J., Colevas A.D., Licitra L., Harrington K., Kasper S., Vokes E.E., Even C., Worden F., Saba N.F., Iglesias Docampo L.C., Haddad R., Rordorf T., Kiyota N., Tahara M., Monga M., Lynch M., Geese W.J., Kopit J., Shaw J.W., Gillison M.L. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med. 2016; 375(19): 1856–67. doi: 10.1056/NEJMoa1602252.

12. Yu S., Yao X. Advances on immunotherapy for osteosarcoma. Mol Cancer. 2024; 23(1): 192. doi: 10.1186/s12943-024-02105-9.

13. Filonenko E.V. Clinical implementation and scientific development of photodynamic therapy in Russia in 2010–2020. Biomedical Photonics. 2021; 10(4): 4–22. (in Russian). doi: 10.24931/2413-9432-2021-9-4-4-22. EDN: UHTUBB.

14. Sun J., Xing F., Braun J., Traub F., Rommens P.M., Xiang Z., Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci. 2021; 22(21): 11354. doi: 10.3390/ijms222111354.

15. Mironov A.F., Grin M.A., Pantushenko I.V., Ostroverkhov P.V., Ivanenkov Y.A., Filkov G.I., Plotnikova E.A., Karmakova T.A., Starovoitova A.V., Burmistrova N.V., Yuzhakov V.V., Romanko Y.S., Abakumov M.A., Ignatova A.A., Feofanov A.V., Kaplan M.A., Yakubovskaya R.I., Tsigankov A.A., Majouga A.G. Synthesis and Investigation of Photophysical and Biological Properties of Novel S-Containing Bacteriopurpurinimides. J Med Chem. 2017; 60(24): 10220–30. doi: 10.1021/acs.jmedchem.7b00577.

16. Sai D.L., Lee J., Nguyen D.L., Kim Y.P. Tailoring photosensitive ROS for advanced photodynamic therapy. Exp Mol Med. 2021; 53(4): 495–504. doi: 10.1038/s12276-021-00599-7.

17. Li Z., Lai X., Fu S., Ren L., Cai H., Zhang H., Gu Z., Ma X., Luo K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. Adv Sci (Weinh). 2022; 9(22). doi: 10.1002/advs.202201734.

18. Alfei S., Zuccari G., Athanassopoulos C.M., Domenicotti C., Marengo B. Strongly ROS-Correlated, Time-Dependent, and Selective Antiproliferative Effects of Synthesized Nano Vesicles on BRAF Mutant Melanoma Cells and Their Hyaluronic Acid-Based Hydrogel Formulation. Int. J. Mol. Sci. 2024; 25(18): 10071. https://doi.org/10.3390/ijms251810071.

19. Kim M.M., Darafsheh A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem Photobiol. 2020; 96(2): 280–94. doi: 10.1111/php.13219.

20. Sun B., Teo J.Y., Wu J., Zhang Y. Light Conversion Nanomaterials for Wireless Phototherapy. Acc Chem Res. 2023; 56(10): 1143–55. doi: 10.1021/acs.accounts.2c00699.

21. Hamblin M.R. Photodynamic Therapy for Cancer: What’s Past is Prologue. Photochem Photobiol. 2020; 96(3): 506–16. doi: 10.1111/php.13190.

22. Shirmanova M.V., Lukina M.M., Sirotkina M.A., Shimolina L.E., Dudenkova V.V., Ignatova N.I., Tobita S., Shcheslavskiy V.I., Zagaynova E.V. Effects of Photodynamic Therapy on Tumor Metabolism and Oxygenation Revealed by Fluorescence and Phosphorescence Lifetime Imaging. Int J Mol Sci. 2024; 25(3): 1703. doi: 10.3390/ijms25031703.

23. Shimolina L.E., Khlynova A.E., Gulin A.A., Elagin V.V., Gubina M.V., Bureev P.A., Sherin P.S., Kuimova M.K., Shirmanova M.V. Photodynamic therapy with Photoditazine increases microviscosity of cancer cells membrane in cellulo and in vivo. J Photochem Photobiol B. 2024; 259: 113007. doi: 10.1016/j.jphotobiol.2024.113007.

24. Kaplan M.A., Galkin V.N., Romanko Yu.S., Osipchuk Yu.S., Drozhzhina V.V., Malova T.I., Olshevskaya V.A. Study of effectiveness of photodynamic therapy for PC-1 experimental tumors with a liposomal form of boronated derivative of chlorine e6 photosensitizer. Radiation and Risk. 2016; 25(3): 57–65. (in Russian). doi: 10.21870/0131-3878-2016-25-357-65. EDN: WLBJJR.

25. Kaplan M.A., Galkin V.N., Romanko Yu.S., Drozhzhina V.V., Arkhipova L.M. Combination photodynamic therapy sarcomas M-1 in combination with chemotherapy. Radiation and Risk. 2016; 25(4): 90–99. (in Russian). doi: 10.21870/0131-3878-2016-25-4-90-99. EDN: XEGTTN.

26. Tzerkovsky D.A., Kozlovsky D.A., Mazurenko A.N., Adamenko N.D., Borichevsky F.F. Experimental in vivo studies of the antitumor efficacy of photodynamic and radiodynamic therapy and their combinations. Biomedical Photonics. 2023; 12(2): 24–33. (in Russian). doi: 10.24931/2413-9432-2023-12-2-24-33. EDN: UKPXZK.

27. Reshetov I.V., Korenev S.V., Romanko Yu.S. Forms of cell death and targets at photodynamic therapy. Siberian journal of oncology. 2022; 21(5): 149–54. (in Russian). doi: 10.21294/1814-4861-2022-21-5-149-154. EDN: ACMUZT.

28. Filonenko E.V. The history of development of fluorescence diagnosis and photodynamic therapy and their capabilities in oncology. Russ. J. Gen. Chem. 2015; 85(1): 211–16. doi: 10.1134/s1070363215010399.

29. Reshetov I.V., Fatyanova A.C., Babaeva Yu.V., Gafarov M.M., Ogdanskaya K.V., Suhova T.E., Korenev S.V., Denisenko M.V., Romanko Yu.S. Modern aspects of photodynamic therapy of actinic keratoses. Biomedical Photonics. 2019; 8(2): 25–30. (in Russian). doi: 10.24931/2413-9432-2019-8-2-25-30. EDN: LYFRQO.

30. Romanko Y.S., Kaplan M.A., Ivanov S.A., Galkin V.N., Molochkova Y.V., Kuntsevich Z.S., Tretiakova E.I., Sukhova T.E., Molochkov V.A., Molochkov A.V. Efficacy of photodynamic therapy for basal cell carcinoma using photosensitizers of different classes. Problems in Oncology. 2016; 62(3): 447–50. (in Russian). EDN: WCNOUD.

31. Reshetov I.V., Korenev S.V., Romanko Yu.S. Modern aspects of photodynamic therapy of basal cell skin cancer. Biomedical Photonics. 2022; 11(3): 35–39. (in Russian). doi: 10.24931/2413-9432-2022-11-3-35-39. EDN: AGQLSM.

32. Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy in the treatment of patients with mycosis fungoides. Biomedical Photonics. 2022; 11(1): 27–36. (in Russian). doi: 10.24931/2413-9432-2022-11-1-27-36. EDN: BIUKCJ.

33. Filonenko E.V., Ivanova-Radkevich V.I. Photodynamic therapy of Bowen’s disease. Biomedical Photonics. 2023; 12(4): 22–29. (in Russian). doi: 10.24931/2413-9432-2023-12-4-22-29. EDN: OWRMXR.

34. Gilyadova A.V., Romanko Yu.S., Ishchenko A.A., Samoilova S.V., Shiryaev A.A., Alekseeva P.M., Efendiev K.T., Reshetov I.V. Photodynamic therapy for precancer diseases and cervical cancer (review of literature). Biomedical Photonics. 2021; 10(4): 59–67. (in Russian). doi: 10.24931/2413-94322021-10-4-59-67. EDN: XQGQTS.

35. Romanko Yu.S., Reshetov I.V. Experimental and clinical combined photodynamic therapy for malignant and premalignant lesions using various types of radiation. Siberian Journal of Oncology. 2024; 23(4): 141–51. (in Russian). doi: 10.21294/1814-4861-2024-23-4-141-151. EDN: VRBPTG.

36. Kim W.S., Khot M.I., Woo H.M., Hong S., Baek D.H., Maisey T., Daniels B., Coletta P.L., Yoon B.J., Jayne D.G., Park S.I. AI-enabled, implantable, multichannel wireless telemetry for photodynamic therapy. Nat Commun. 2022; 13(1): 2178. doi: 10.1038/s41467-022-29878-1.

37. Zhang Y., Chen Y., Mou H., Huang Q., Jian C., Tao Y., Tan F., Ou Y. Synergistic induction of ferroptosis by targeting HERC1-NCOA4 axis to enhance the photodynamic sensitivity of osteosarcoma. Redox Biol. 2024; 76: 103328. doi: 10.1016/j.redox.2024.103328.

38. Wang Y., Zhou X., Yao L., Hu Q., Liu H., Zhao G., Wang K., Zeng J., Sun M., Lv C. Capsaicin Enhanced the Efficacy of Photodynamic Therapy Against Osteosarcoma via a Pro-Death Strategy by Inducing Ferroptosis and Alleviating Hypoxia. Small. 2024; 20(26): e2306916. doi: 10.1002/smll.202306916.

39. An X., Zhong D., Wu W., Wang R., Yang L., Jiang Q., Zhou M., Xu X. Doxorubicin-Loaded Microalgal Delivery System for Combined Chemotherapy and Enhanced Photodynamic Therapy of Osteosarcoma. ACS Appl Mater Interfaces. 2024; 16(6): 6868–78. doi: 10.1021/acsami.3c16995.

40. Zhang C., Li D., Zhang X., Dai R., Kang W., Li Y., Liu Q., Gao M., Zheng Z., Zhang R., Wen Z. Dual regulation of osteosarcoma hypoxia microenvironment by a bioinspired oxygen nanogenerator for precise single-laser synergistic photodynamic/photothermal/induced antitumor immunity therapy. Mater Today Bio. 2024; 26: 101054. doi: 10.1016/j.mtbio.2024.101054.

41. Zhan F., Zhang Y., Zuo Q., Xie C., Li H., Tian L., Wu C., Chen Z., Yang C., Wang Y., Li Q., He T., Yu H., Chen J., Xiang J., Ou Y. YAP knockdown in combination with ferroptosis induction increases the sensitivity of HOS human osteosarcoma cells to pyropheophorbide-α methyl ester mediated photodynamic therapy. Photodiagnosis Photodyn Ther. 2022; 39: 102964. doi: 10.1016/j.pdpdt.2022.102964.

42. Ge Y.X., Zhuang H.J., Zhang T.W., Liang H.F., Ding W., Zhou L., Dong Z.R., Hu Z.C., Chen Q., Dong J., Jiang L.B., Yin X.F. Precise manipulation of circadian clock using MnO2 nanocapsules to amplify photodynamic therapy for osteosarcoma. Mater Today Bio. 2023; 19: 100547. doi: 10.1016/j.mtbio.2023.100547.

43. Yu H., Zhang Y., Zuo Q., Zhong S., Chen Y., Zhang M., Zhan F., Ou Y. Targeting X box-binding protein-1 (XBP1) enhances the sensitivity of HOS osteosarcoma cells to pyropheophorbideα methyl ester-mediated photodynamic therapy. Photodiagnosis Photodyn Ther. 2022; 37: 102646. doi: 10.1016/j.pdpdt.2021.102646.

44. Zhang Q., Xia Y., Wang L., Wang Y., Bao Y., Zhao G.S. Targeted anti-angiogenesis therapy for advanced osteosarcoma. Front Oncol. 2024; 14: 1413213. doi: 10.3389/fonc.2024.1413213.

45. Cuadrado C.F., Lagos K.J., Stringasci M.D., Bagnato V.S., Romero M.P. Clinical and pre-clinical advances in the PDT/PTT strategy for diagnosis and treatment of cancer. Photodiagnosis Photodyn Ther. 2024; 50: 104387. doi: 10.1016/j.pdpdt.2024.104387.

46. Wang J., Liu M., Wang J., Li Z., Feng Z., Xu M., Wang H., Li H., Li Z., Yu J., Liu J., Wei Q., Zhang S., Zhang X. Zinc oxide nanoparticles with catalase-like nanozyme activity and near-infrared light response: A combination of effective photodynamic therapy, autophagy, ferroptosis, and antitumor immunity. Acta Pharm Sin B. 2024; 14(10): 4493−508. doi: 10.1016/j.apsb.2024.07.002.

47. Grande M.P.D., Miyake A.M., Nagamine M.K., Leite J.V.P., da Fonseca I.I.M., Massoco C.O., Dagli M.L.Z. Methylene blue and photodynamic therapy for melanomas: Inducing different rates of cell death (necrosis and apoptosis) in B16-F10 melanoma cells according to methylene blue concentration and energy dose. Photodiagnosis Photodyn Ther. 2022; 37: 102635. doi: 10.1016/j.pdpdt.2021.102635.

48. Meier D., Botter S.M., Campanile C., Robl B., Gräfe S., Pellegrini G., Born W., Fuchs B. Foscan and foslip based photodynamic therapy in osteosarcoma in vitro and in intratibial mouse models. Int J Cancer. 2017; 140(7): 1680−92. doi: 10.1002/ijc.30572.

49. Elfeky S.A., Elsayed A., Moawad M., Ahmed W.A. Hydroxyapatite nanocomposite as a potential agent in osteosarcoma PDT. Photodiagnosis Photodyn Ther. 2020; 32: 102056. doi: 10.1016/j.pdpdt.2020.102056.

50. Yu H., Zhang Y., Zuo Q., Zhong S., Chen Y., Zhang M., Zhan F., Ou Y. Targeting X box-binding protein-1 (XBP1) enhances the sensitivity of HOS osteosarcoma cells to pyropheophorbideα methyl ester-mediated photodynamic therapy. Photodiagnosis Photodyn Ther. 2022; 37: 102646. doi: 10.1016/j.pdpdt.2021.102646.

51. Zuo Q., Ou Y., Zhong S., Yu H., Zhan F., Zhang M. Targeting GRP78 enhances the sensitivity of HOS osteosarcoma cells to pyropheophorbide-α methyl ester-mediated photodynamic therapy via the Wnt/β-catenin signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2021; 53(10): 1387–97. doi: 10.1093/abbs/gmab115.

52. Yu W., Wang Y., Zhu J., Jin L., Liu B., Xia K., Wang J., Gao J., Liang C., Tao H. Autophagy inhibitor enhance ZnPc/BSA nanoparticle induced photodynamic therapy by suppressing PD-L1 expression in osteosarcoma immunotherapy. Biomaterials. 2019; 192: 128–39. doi: 10.1016/j.biomaterials.2018.11.019.

53. Cheng J., Wang W., Xu X., Lin Z., Xie C., Zhang Y., Zhang T., Li L., Lu Y., Li Q. AgBiS2 nanoparticles with synergistic photodynamic and bioimaging properties for enhanced malignant tumor phototherapy. Mater Sci Eng C Mater Biol Appl. 2020; 107: 110324. doi: 10.1016/j.msec.2019.110324.

54. Huang X., Chen J., Wu W., Yang W., Zhong B., Qing X., Shao Z. Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma. Acta Biomater. 2020; 109: 229–43. doi: 10.1016/j.actbio.2020.04.009.

55. Xu C., Wang M., Guo W., Sun W., Liu Y. Curcumin in Osteosarcoma Therapy: Combining With Immunotherapy, Chemotherapeutics, Bone Tissue Engineering Materials and Potential Synergism With Photodynamic Therapy. Front Oncol. 2021; 11: 672490. doi: 10.3389/fonc.2021.672490.

56. Liang W., Long H., Zhang H., Bai J., Jiang B., Wang J., Fu L., Ming W., Zhao J., Zeng B. Bone scaffolds-based localized drugs delivery for osteosarcoma: current status and future perspective. Drug Deliv. 2024; 31(1): 2391001. doi: 10.1080/10717544.2024.2391001.

57. Jardón-Guadarrama G., Manríquez-Ramírez M.E., RodríguezPérez C.E., Díaz-Ruiz A., de Los Ángeles Martínez-Cárdenas M., MataBermudez A., Ríos C., Ortiz-Islas E. TiO2-ZnPc nanoparticles functionalized with folic acid as a target photosensitizer for photodynamic therapy against glioblastoma cells. J Mater Sci Mater Med. 2024; 35(1): 51. doi: 10.1007/s10856-024-06823-w.

58. Yu W., Ye M., Zhu J., Wang Y., Liang C., Tang J., Tao H., Shen Y. Zinc phthalocyanine encapsulated in polymer micelles as a potent photosensitizer for the photodynamic therapy of osteosarcoma. Nanomedicine. 2018; 14(4): 1099–110. doi: 10.1016/j.nano.2018.02.005.

59. Matsubara T., Kusuzaki K., Matsumine A., Murata H., Satonaka H., Shintani K., Nakamura T., Hosoi H., Iehara T., Sugimoto T., Uchida A. A new therapeutic modality involving acridine orange excitation by photon energy used during reduction surgery for rhabdomyosarcomas. Oncol Rep. 2009; 21(1): 89–94.

60. Kusuzaki K., Hosogi S., Ashihara E., Matsubara T., Satonaka H., Nakamura T., Matsumine A., Sudo A., Uchida A., Murata H., Baldini N., Fais S., Marunaka Y. Translational research of photodynamic therapy with acridine orange which targets cancer acidity. Curr Pharm Des. 2012; 18(10): 1414–20. doi: 10.2174/138161212799504812.


Review

For citations:


Romanko Yu.S., Reshetov I.V. Current trends in the field of photodynamic therapy of osteogenic sarcoma (results of pharmaceutical and experimental studies). Siberian journal of oncology. 2025;24(3):162-171. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-3-162-171

Views: 90


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)